CORRESPONDENCE

oped country like USA and a developing country like China

BAO-HONG ZHANG†,‡,§
QIN-LIAN WANG†
KUN-BO WANG‡
DAYUN ZHOU‡
FANG LIU‡

†Henan Vocational-Technical Teachers College, Xinxiang, Henan 453003, China
‡Cotton Research Institute, Chinese Academy of Agricultural Science, Anyang, Henan 455112, China
§Present address: Department of Biological Science, Texas Tech University, Lubbock, TX 79409, USA
†For correspondence. e-mail: baohong.zhang@ittu.edu

Palaeomagnetic dating of Sankra dyke swarm

There is an inherent contradiction in the palaeomagnetic work on Sankra pluton by Poornachandra Rao et al. According to the NGRI Annual Report, Bhalla et al. (of which Poornachandra Rao is the second author) state that 'palaeomagnetic data from the surface samples of gray granite and syenite (Sankra pluton) reveal magmatic activity between Late Palaeozoic to Late Cretaceous'. Further 'the pink granite in which the dolerites intrude show downward magnetic inclination whereas, the dolerites exhibit upward magnetic inclinations acquired in normal and reverse fields, with intermediate and shallow southern hemispheric locations respectively. This is in conformity with movement of the subcontinent during the Palaeozoic era'. If the Sankra pluton represents igneous activity during Palaeozoic era and I am inclined to agree with this interpretation, how do the dykes intruding it give ages between 750 and 50 Ma, as suggested by the authors?

In the absence of (reliable) geochronological data on Sankra and other adjacent plutons, it may not be appropriate to include the plutons in the Malani igneous suite (MIS) and it would be far fetched to propose a tectonic event. The 700–750 Ma event is very well documented in the form of anorogenic, A-type magmatism, in the Trans-Aravalli block and the South Indian block (north of the Palghat–Cauvery shear zone of the Indian shield). All the magmatic activity in the Indian shield (except MIS) centred around 700–750 Ma cannot be included in the MIS. The MIS is characterized by epizonal, volcano-plutonic ring structures, 'within plate' A-type magmatism indicating extensional tectonic environment. High quality data generated should be commensurate with strong field base.

NARESH KOCHHAR

Centre of Advanced Study in Geology, Panjab University, Chandigarh 160 014, India
e-mail: nareshkochhar2003@yahoo.com
Reply:

We appreciate the interest of Kochhar on our work reported in ref (1). He has worked quite extensively in the region and his concern is understandable. The main reason for his comments arises because some more results were obtained from the region subsequent to that presented in the Annual Report 1998-99 of NGR. Our earlier palaeomagnetic results on the granite and dolerite bodies in the region reveal that the magmatic activity is of late Palaeozoic to late Cretaceous periods. Subsequently we have extended these studies on an aplite dyke also in the region. This aplite dyke revealed remanent magnetic directions similar to that of Malani rhyolites that were well constrained with palaeomagnetic and geochronological results. Therefore, in the light of this new result, we have revised the period of magmatism in the region to Neo-Proterozoic to Palaeocene (750-50 Ma). Bhusan and Khullar proposed the stratigraphy of the dyke swarms in the region to be of Neo-Proterozoic to Palaeocene on the basis of geological, aerial photo and field relationships. Therefore, there is a very good agreement of palaeomagnetic and radiometric data of aplite dyke and Malani rhyolites which extend the magmatic activity in the region to Neo-Proterozoic era.

The other comment by Kochhar is that the proposal of tectonic trio formed by the Indian subcontinent, Madagascar and Seychelles Islands is far fetched. In the Rodinia supercontinent proposed by Weil et al., the Indian subcontinent, Madagascar and Seychelles Islands were found to locate towards the NW corner of the re-construction. It is proposed by Torsvik et al. that India, Madagascar and Seychelles Island formed an outboard continental terrane of the Rodinia supercontinent during the Neo-Proterozoic (ca. 750 Ma). Subsequent palaeomagnetic and geochronological studies on the Malani Igneous Suite from Rajastan and granitoids from Seychelles Islands support the formations in the reconstructed Rodinia supercontinent. Our palaeomagnetic results of the aplite dyke from the Sankra dyke swarm are similar to the palaeomagnetic results of Malani rhyolites and therefore, we are inclined to agree with the proposal of a tectonic trio of these continents.

G. V. S. POORNACHANDRA RAO*
S. B. SINGH
K. J. PRASANNA LAKSHMI

Palaeomagnetism Laboratory,
National Geophysical Research Institute,
Uppal Road,
Hyderabad 500 007, India
*For correspondence.
e-mail: gvsrao@rediffmail.com

Rajasaurus narmadaensis

This has reference to the News item that appeared in Current Science, wherein it is stated that *Rajasaurus* was perhaps a 'truly Indian dinosaur' whose morphological characters might have evolved independently. This is nowhere stated in the paper under reference. On the contrary, while discussing the phylogenetic affinity of the Indian species, the authors point out its close affinity to *Majungatholus* from Madagascar and *Carnotaurus* from South Africa.

Secondly, the palaeogeographic picture for the Late Cretaceous is one of the popular hypothesis and not the one propagated in the research paper. It has been suggested that area cladogram implied by the phylogenetic relationships of the Gondwana dinosaurs (Figure 1) offers credence to an altogether different hypothesis that Africa broke away from other Gondwanan land mass before land connection was severed between India, Madagascar and South America under this hypothesis, connection between Africa and South America was cut-off in Early Cretaceous that fully isolated Africa (Figure 2a and b) while connections were maintained between India and Madagascar with South America through Antarctica via Kerguelen Plateau till the end of Cretaceous (Figure 2c). The above palaeogeographic implications of abelisaurid dinosaur may not find support from the most popular palaeogeographic reconstructions that depict India as an island drifting independent of other Gondwanan land masses in the Late Cretaceous. But if the phylogenetic affinity of the new species and other abelisaurid dinosaurs from India with similar dinosaurs from other Gondwana continents is to be believed, the palaeogeographic picture was drastically different during greater part of the Cretaceous.

The revised reconstruction suggested by Cretaceous dinosaurs predicts a greater similarity of the Late Cretaceous terrestrial biota between South America and Indo-Madagascar (via Antarctica) than between South America and Africa.

CURRENT SCIENCE, VOL. 86, NO. 6, 25 MARCH 2004

761