in *R. indica* protoplast culture. Maintenance of high osmotic condition (0.6 M glucose) up to the second week of culture is necessary for the stability of the protoplasts. Gradual lowering of the osmoticum by lowering of glucose, increasing sucrose, and a gradual lowering of auxin (both 2,4-D and NAA in the RA₂ medium and finally elimination of 2,4-D in RA₃, RA₄ and LR1 media) are important for high plating efficiency of protoplasts and high-frequency of plant regeneration from calli of protoplast origin in *R. indica*.

- Vamling, K. and Glimelius, K., Regeneration of plants from protoplasts of oilseed *Brassica* crops. In *Biotechnology in Agriculture and Forestry* (ed. Bajaj, Y. P. S.), Springer-Verlag, Berlin, 1990, vol. 10, pp. 387–417.
- Hansen, L. N., Ortiz, R. and Andersen, S. B., Genetic analysis of protoplast regeneration ability in *Brassica oleracea*. *Plant Cell Tiss. Org. Cult.*, 1999, 58, 127–132.
- Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures. *Physiol. Plant.*, 1962, 15, 473–497.
- Larkin, P. J., Purification and viability determinations of plant protoplasts. *Planta*, 1976, 128, 213-216.
- Chatterjee, G., Sikdar, S. R., Das, S. and Sen, S. K., Intergeneric somatic hybrid production through protoplast fusion between *Brassica juncea* and *Diplotaxis muralis*. Theor. Appl. Genet., 1988, 76, 915–922.
- Kao, K. N. and Michayluk, M. R., Nutritional requirements for growth of *Vicia hajastana* cells and protoplasts at a very low population density in liquid media. *Planta*, 1975, 126, 105– 110.
- Hu, Q., Andersen, S. B. and Hansen, L. N., Plant regeneration capacity from mesophyll protoplasts in *Isatis indigotica*. *Plant Cell Tiss. Org. Cult.*, 1999, 55, 155–157.
- 8. Schenck, H. R. and Hoffmann, F., Callus and root regeneration from mesophyll protoplasts of basic *Brassica* species: *B. campestris*, *B. oleracea* and *B. nigra*. *Z. Pflanzenzucht*., 1979, **82**, 354–360.
- Glimelius, K., High growth rate and regeneration capacity of hypocotyls protoplasts in some Brassicaceae. *Physiol. Plant.*, 1984, 61, 38-44.
- Chatterjee, G., Sikdar, S. R., Das, S. and Sen, S. K., Regeneration of plantlets from mesophyll protoplasts of *Brassica juncea* (L.) Czern & Coss. *Plant Cell Rep.*, 1985, 4, 245–247.
- 11. Sikdar, S. R., Chatterjee, G., Das, S. and Sen, S. K., Regeneration of plants from mesophyll protoplasts of the wild crucifer *Eruca sativa* Lam. *Plant Cell Rep.*, 1987, **6**, 486–489.

ACKNOWLEDGEMENTS. A grant from Council of Scientific and Industrial Research, New Delhi, to S.R.S. is acknowledged.

Received 13 June 2003; revised accepted 14 August 2003

Molecular diversity in *Phyllanthus* amarus assessed through RAPD analysis

Neeraj Jain, A. K. Shasany, V. Sundaresan, S. Rajkumar, M. P. Darokar, G. D. Bagchi, A. K. Gupta, Sushil Kumar and S. P. S. Khanuja*

Central Institute of Medicinal and Aromatic Plants, CIMAP P.O., Lucknow 226 015, India

A collection of Phyllanthus amarus was made from various parts of India to determine the extent of genetic variability using analysis at DNA level. RAPD profiling of 33 collections from different locations, covering states of Tamil Nadu, Karnataka, Maharashtra, Guja-West Bengal, Tripura, Uttar Pradesh, Punjab and Haryana was generated. Analysis through UPGMA revealed up to 65% variation among these accessions. However, intra-population variation found to be much larger in the accession from the southern part of the country. Nevertheless, interpopulation variation also overlaps in the phylogenetic clustering, which is understandable from the natural dissemination of this plant species as a weed that has spread across the geographical boundaries. The study indicates the random hybridization across the populations falling within the range of possible crosspollination in terms of physical distance. A study of these accessions at a single location, allowing free mating, would throw light on the extent of cross-pollination and genetic flow.

THE genus Phyllanthus L. of the family Euphorbiaceae consists of about 800 species, of which 200 are American, 100 African, 70 from Madagascar and the remaining Asian and Australasian¹. Phyllanthus amarus is an important medicinal plant species due to its antiviral properties, useful against hepatitis infection. The species is also used in stomach ailments like dyspepsia, colic, diarrhoea, dysentery, dropsy, urinogenital problems and also as external application for oedematous swelling and inflammation. This is an important ingredient in many ayurvedic preparations, especially for the treatment of jaundice. The taxonomic revision on this genus by Webster included closely-related genera P. amarus, under the sub-section Swartiziani of the section Phyllanthus. The nomenclature, taxonomic distinctness and close relatives of P. amarus were addressed in detail based on morphology and geographical distribution²⁻⁴. It is said to be related to P. abnormis, which is endemic to sandy areas in Texas and Florida of southern USA². It is therefore most likely that P. amarus originated in the Caribbean area as a vicarious species of P. abnormis of the southern United

^{*}For correspondence. (e-mail: director@cimap.res.in)

States and has spread around the tropics by trading vessels².

This species is distributed all over India and is considered as the most widely occurring species of *Phyllanthus* in India⁴. The presence of dioceous cymules³ at the end of the branches is considered to be a unique character, though it resembles in many respects its close relatives, *P. debilis* and *P. fraternus* of the same sub-section Swartziani¹. This is the only sub-section in the section *Phyllanthus*, which consists of most widespread herbaceous species throughout the tropics. Considering widespread distribution and marked morphological diversity, including growth habit of plants within species, it is important to analyse the genetic diversity using molecular tools.

PCR-based markers have been used extensively for assessing genetic variation within the species to measure the genetic diversity⁵. So far, genetic diversity analysis in this genus has been carried out regionally for the species *P. emblica*⁶. In the present analysis RAPD markers were used to assess the genetic diversity within *P. amarus* species collected from different geographical locations of India.

Table 1. P. amarus collection from different parts of the country

Accession no.	Location	State
CIMAP/PAC	Lucknow	Uttar Pradesh
CIMAP/PA2	Tinisular, Chennai	Tamil Nadu
CIMAP/PA5	Mundiyanakau, Arcot	Tamil Nadu
CIMAP/PA6	Ullundurpet, Arcot	Tamil Nadu
CIMAP/PA11	Adivaran, Salem	Tamil Nadu
CIMAP/PA21	Thirumangalam, Madurai	Tamil Nadu
CIMAP/PA22	Kayathar, Tirunelveli	Tamil Nadu
CIMAP/PA23	Vallioor, Tirunelveli	Tamil Nadu
CIMAP/PA25	Kanyakumari	Tamil Nadu
CIMAP/PA26	Palayamkottai	Tamil Nadu
CIMAP/PA28	Attyapuram, Tuticorin	Tamil Nadu
CIMAP/PA30	Paramakudi	Tamil Nadu
CIMAP/PA37	Pudukkottai	Tamil Nadu
CIMAP/PA39	Kumbakonam	Tamil Nadu
CIMAP/PA53	Sepahijala Wildlife Sanctuary	Tripura
CIMAP/PA54	Barjalu, Jirania	Assam
CIMAP/PA74	Momealli	Assam
CIMAP/PA76	GKVK, Bangalore	Karnataka
CIMAP/PA77	Sanakana	Karnataka
CIMAP/PA78	CFTRI Campus, Mysore	Karnataka
CIMAP/PA80	Kusal Nagar	Karnataka
CIMAP/PA84	Harnahatti	Karnataka
CIMAP/PA98	Dhaiadam	Karnataka
CIMAP/PA111	Gurgaon	Haryana
CIMAP/PA112	Ferozpur Jhinka, Gurgaon	Haryana
CIMAP/A117	Karnal	Haryana
CIMAP/PA120	Panipat	Punjab
CIMAP/PA134	Kalmegha	West Bengal
CIMAP/PA135	Rishra	West Bengal
CIMAP/PA136	Bithur	Uttar Pradesh
CIMAP/PA140	Shakti Nagar	Karnataka
CIMAP/PA144	Agra	Uttar Pradesh
CIMAP/PA145	Aghar	Gujarat

Extensive field trips were carried out to collect P. amarus from different geographical locations in India. Each accession consisted of 20 plants within a radius of 5 m, and seeds from same locality. The pooled seeds were stored and maintained in the seed gene bank of CIMAP, Lucknow. Out of the total germplasm collections of P. amarus, 33 random accessions were taken for analysis (Table 1). DNA was isolated from the leaf tissue, essentially according to the protocol described earlier⁷, from 20 plants per accession and pooled. PCRs were carried out in 25 µl volume. A reaction tube contained 25 ng DNA, 0.2 unit Taq DNA polymerase, 100 mM of each dNTP, 1.5 mM MgCl2 and 5 pmol decanucleotide primers. The amplifications were carried out using the DNA Engine thermal cycler (MJ Research, USA) using 94, 35 and 72°C temperatures for 40 cycles⁸. The amplified products were separated on 1.2% agarose gel containing $0.5 \,\mu g \, m\Gamma^1$ of ethidium bromide and photographed with Image master VDS (Pharmacia). The bands were analysed using Image master 1D elite software, and the graphic phenogram of the genetic relatedness among the accessions was produced by means of UPGMA (unweighted pair group method with arithmetic average) cluster analysis. Custom-made decanucleotide primers were synthesized in the laboratory on Applied Biosystems 392 DNA-RNA Synthesizer and were designated as MAP01 to MAP20. The sequences of the primers MAP01 to MAP20 were AAATCGGAGC, GTCCTACT-CG, GTCCTTAGCG, TGCGCGATCG, AACGTACGCG, GCACGCCGGA, CACCCTGCGC, CTATCGCCGC, CG-GGATCCGC, GCGAATTCCG, CCCTGCAGGC, CCA-AGCTTGC, GTGCAATGAG, AGGATACGTG, AAGAT-GGATCTGAAC, TTGTCTCAGG, CATCCC-GAAC, GGACTCCACG, AGCCTGACGC, respectively.

Pairwise comparisons for the presence and absence of bands in the RAPD profiles (Figure 1) were made to calculate similarity indices using the method of Nei and Li⁹. The average of similarity matrices was used to generate a tree by UPGMA.

The similarity indices as given in Table 2, clearly show that *P. amarus* accessions from the country show a variation up to 65%. Also, there are collections as close as 98% in terms of similarity index, even though they may be belonging to geographically distinct locations. This situation can arise in natural populations when there is a possibility of free/random pollen flow and fertilization, as is the case in most cross-pollinated species. On the other hand, further amplification of such cross-hybridized seeds through dissemination by natural modes like wind is possible. This is probably the reason that accessions like PA21 and PA117 appeared closely related at the genetic level, although geographically they are from distinct zones of highly distinct locations of the country (Tamil Nadu and Haryana).

The subclusters in the dendrogram (Figure 2) could be to some extent correlated to the geographical distribution

APD	
ρ E	
ssions usin	
acce	
amarus	
llanthus	
Phyl	
x of	
index	
imilarity	
Sir	
Table 2.	

144	90
136 1	1.00
4 135	00 38 1.00 37 0.85
117 134	1.00 0.78 1.00 0.90 0.88 0.75 0.97
1 112	00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
111	0 4 4 1.00 6 0.85 6 0.85 7 0.79 7 0.84 8 0.85 9 0.87
86 1	0 0 3 1.00 5 0.64 6 0.61 7 0.77 7 0.64 8 0.68
84	0 0 3 1.00 5 0.73 3 0.58 3 0.64 4 0.64 6 0.63
78	0 8 1.00 8 0.83 5 0.83 5 0.63 7 0.54 1 0.66
77 9	1.00 0.72 1.00 0.77 0.78 0.87 0.75 0.85 0.85 0.72 0.63 0.55 0.53 0.71 0.62
9/ 1	
14	0 0 1 1.00 9 0.88 9 0.93 5 0.83 6 0.63 6 0.63 7 0.69 8 0.63 8 0.63 9 0.63
0 54	1.00 0.59 1.00 0.93 0.61 0.83 0.59 0.78 0.65 0.95 0.59 0.63 0.64 0.67 0.87 0.63 0.64 0.64 0.78
3 30	
22 23	1.00 0.78 1.00 0.70 0.91 0.86 0.66 0.73 0.96 0.70 0.71 0.89 0.68 0.89 0.68 0.99 0.67 0.99 0.67
21 2	1.00 0.97 1.00 0.76 0.076 0.076 0.077 0.078 0.077 0.077 0.078 0.077 0.079 0.077 0.079 0.079 0.079 0.079 0.079 0.098 0.097 0.098 0.097 0.007 0.007 0.007 0.007 0.007 0.007 0.00
=	1.00 0.63 1.00 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9	1.00 0.91 0.54 0.55 0.65 0.73 0.73 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
2	1.00 0.48 ; 0.67 (0.65
C	1.00 0.49 0.74 0.68 0.36 0.59 0.59 0.59 0.59 0.51 0.59 0.39 0.31 0.33
145	1.00 0.50 0.78 0.47 0.46 0.75 0.63 0.63 0.64 0.65 0.66 0.66 0.69 0.66 0.66 0.66 0.66
140	1.00 0.51 0.73 0.74 0.66 0.69 0.70 0.70 0.73 0.63 0.63 0.63 0.63 0.63
120	1.00 0.96 0.68 0.67 0.72 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73
80	1.00 0.85 0.81 0.59 0.64 0.64 0.64 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
53	1.00 0.644 0.558 0.772 0.773 0.773 0.773 0.650 0
39	1.00 0.66 0.66 0.77 0.81 0.68 0.65 0.73 0.73 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
37	1.00 0.43 0.643 0.73 0.73 0.73 0.643 0.643 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653 0.653
28	1.00 0.76 0.97 0.77 0.88 0.92 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
26	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
25	1.00 0.72 0.65 0.65 0.86 0.71 0.67 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68
5	1.00 0.63 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07
	PA5 PA25 PA26 PA26 PA27 PA39 PA39 PA39 PA39 PA140 PA140 PA140 PA141 PA21 PA22 PA21 PA22 PA30 PA30 PA30 PA31 PA31 PA31 PA314 PA316

Figure 1. Representative RAPD profile of *Phyllanthus amarus* accessions (legend of the lane according to Table 1; marker \(\frac{\lambda}{DNA}\) HindIII digest) with one of the primers (5' AACGTACGCG 3').

Figure 2. Dendrogram showing diversity of Phyllanthus amarus accessions.

(Table 3). Group A of the first major cluster represents all the accessions from southern part of the country (Tamil Nadu and Karnataka), except one accession which is a collection from Punjab. In this subcluster, the southern representation is mostly from the coastal belt. In the other subcluster (B), all the accessions are from the southern part of the country, representing the Deccan Plateau. Interestingly, the accessions collected from Tamil Nadu are distributed in all the subclusters, indicating the differences in genotypes with wide habitat diversity. However, the accessions of P. amarus also show different habit forms such as procumbent or woody herbs, branches with unisexual cymules or bisexual cymules, which created confusion among some researchers about the taxonomy of P. amarus¹⁰ and its close relatives. Similarly, varied habit forms with high degree of genetic similarity (92%) were observed in this study, as in the case of CIMAP/PA140 (procumbent) and CIMAP/PA28 (woody). High genetic similarity is expected among *P. amarus* accessions in the southern part of country, due to the same geographical location. But, in contrast, they showed broad genetic base indicating earlier introduction of this species to coastal plain, and subsequently leading to accumulation of variation.

The association between the accessions CIMAP/PAC (CIMAP farm Lucknow) and CIMAP/PA37 (Pudukottai, Tamil Nadu) in subcluster C, sharing 92% RAPD markers, is indicative of escapes from selected earlier collections at CIMAP, similar to that of CIMAP/PA37. The other major cluster (F) represents a total of 11 accessions from mixed geographical locations. *P. amarus* is considered the most widespread species, with high recruitment ratio and dispersal. Moreover, this species as a major weed in the crop fields, has also the possibility of spreading and respreading to different geographical regions as contaminant in the seeds. The accessions from Gujarat

Table 3. Representation of accessions in different clusters

Cluster	Accession	Location	State
A	CIMAP/PA5 CIMAP/PA39 CIMAP/PA26 CIMAP/PA28 CIMAP/PA120 CIMAP/PA140	Mundiyanakau, Arcot Kumbakonam Palayamkottai Attyapuram, Tuticorin Panipat Shakti Nagar	Tamil Nadu Tamil Nadu Tamil Nadu Tamil Nadu Punjab Karnataka
В	CIMAP/PA6 CIMAP/PA11 CIMAP/PA23 CIMAP/PA74 CIMAP/PA30 CIMAP/PA78 CIMAP/PA76 CIMAP/PA98 CIMAP/PA97 CIMAP/PA98	Ullundurpet, Arcot Adivaran, Salem Vallioor, Tirunelveli Momealli Paramakudi CFTRI Campus, Mysore GKVK, Bangalore Dhaiadam Sanakana Harnahatti	Tamil Nadu Tamil Nadu Assam Tamil Nadu Karnataka Karnataka Karnataka Karnataka Karnataka
С	CIMAP/PA37 CIMAP/PAC	Pudukkottai Lucknow	Tamil Nadu Uttar Pradesh
D	CIMAP/PA25 CIMAP/PA80	Kanyakumari Kusal Nagar	Tamil Nadu Karnataka
E	CIMAP/PA53	Sepahijala Wildlife Sanctuary	Tripura
F	CIMAP/PA2 CIMAP/PA54 CIMAP/PA117 CIMAP/PA117 CIMAP/PA135 CIMAP/PA144 CIMAP/PA112 CIMAP/PA111 CIMAP/PA134 CIMAP/PA136	Tinisular, Chennai Barjalu, Jirania Thirumangalam, Madurai Karnal Kayathar, Tirunelveli Rishra Agra Ferozpur Jhinka, Gurgaon Gurgaon Kalmegha Bithur	Tamil Nadu Assam Tamil Nadu Haryana Tamil Nadu West Bengal Uttar Pradesh Maharashtra Maharashtra West Bengal Uttar Pradesh
G	CIMAP/PA145	Aghar	Gujarat

(west India) and Tripura (northeast India) outgrouped from the rest, forming distinct clusters (E and G) according to expectation, as they are from two entirely different geographical locations. Though *P. amarus* has distinct characters to substantiate the species status and constant chromosome number¹¹, the RAPD profiles display vast genetic variation indicative of the evolving nature of the taxa.

- Webster, G. L., Synopsis of the genus and suprageneric taxa of Euphorbiaceae. Ann. Mo. Bot. Gard., 1994, 81, 33-144.
- Webster, G. L., A monographic study of the west Indian species of *Phyllanthus*. J. Arnold Arboric. Harv. Univ., 1957, 39, 49–100.
- Mitra, R. L. and Jain, S. K., Concept of *Phyllanthus niruri* (Euphorbiaceae) in Indian Floras. *Bull. Bot. Surv. India*, 1987, 27, 161–176.
- Chowdhury, L. B. and Rao, R. R., Taxonomic study of herbaceous species of *Phyllanthus* L. (Euphorbiaceae) in India. *Phytotaxonomy*, 2002, 2, 143–162.

- Virk, P. S., Ford-Lloyed, B. V., Jackson, M. T. and Newbury, H. J., Use of RAPD for the study of diversity within plant germplasm collections. *Heredity*, 1995, 74, 170–179.
- Shaanker, R. U. and Ganeshaiah, K. N., Mapping genetic diversity of *Phyllanthus emblica*: forest gene bank as a new approach for in situ conservation of genetic resources. Curr. Sci., 1997, 73, 163– 168.
- Khanuja, S. P. S., Shasany, A. K., Darokar, M. P. and Sushil Kumar, Rapid isolation of PCR amplifiable DNA from the dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils by modified CTAB procedure. *Plant Mol. Biol. Rep.*, 1999, 17, 74.
- Khanuja, S. P. S., Shasany, A. K., Srivastava, A. and Sushil Kumar, Assessment of genetic relationships in *Mentha* species. *Euphytica*, 2000, 111, 121–125.
- Nei, M. and Li, W. H., Mathematical model for studying genetic variation in terms of restriction endonucleases. *Proc. Natl. Acad.* Sci. USA, 1979, 76, 5269-5273.
- Mathew, K. M., Flora of Tamil Nadu Carnatic, St. Joseph's College, Tiruchirapalli, 1983.
- Brunel, J. F. and Roux, J., South-East Asian Phyllanthus II. Some Phyllanthus of subsect. Swartziani. Nord. J. Bot., 1984, 4, 469– 473

ACKNOWLEDGEMENTS. We thank the Department of Biotechnology and the Council of Scientific and Industrial Research, Government of India for financial support.

Received 15 April 2003; revised accepted 29 July 2003

Pattern of species succession of soft-bottom macrofauna in the estuaries of Goa, west coast of India

Sadanand N. Harkantra* and Nimi R. Rodrigues

Biological Oceanography Division, National Institute of Oceanography, Dona Paula, Goa 403 004, India

Multivariate techniques, chord normalized species shared (CNESS) and principal component analyses of hypergeometric probability of species matrices (PCA-H) were applied to soft-bottom macrofauna data of Goa estuaries, west coast of India, to assess the pattern of species succession at different sites. These analyses revealed three groups of species that produced three-stages or triangular species succession pattern, corresponding to the three seasons, namely post-, pre- and southwest monsoon. Each site exhibited a different pattern of species succession and compostion. A total of 58 species were recorded among which 18 were new to the local fauna. Dominant species that controlled the orientation of this succession were Polychaetes (Prioniospio pinnata, Clymene annandalei, Nereis capensis), Bivalves (Meretrix casta, Cardium flavum), Amphipoda (Urothoe platydactyla), Echiurida (Thalassema sp.) and Nema-

^{*}For correspondence. (e-mail: sadanand@darya.nio.org)