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Consider the case when r,(#n) is not equal to 1. Since the
question regarding r(n) being even for all n > n( seems dif-
ficult, let us ask (a hopefully simpler) question.

If 4 is a infinite subset of  such that r,(n) is different
from 1 for all n > g, how small can 4 be?

Let us start with an example.

Let A=1{2+2" k, le U{0}}, then ryn) is different
from 1 for all # > 10 and |4(x)| is around % (In x)z.

Nicolas et al.® proved the following theorem.

Theorem 13. If A4 is an infinite subset of  such that
r4d,n)y+ 1 for all sufficiently large natural numbers n,
then
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The authors of this article have proved the following re-
sult.

Theorem 14. (Ref. 9) There exists an absolute constant
¢ >0 with the following property: for any infinite subset
A of  such that r(4,n)#1 for all sufficiently large natu-
ral numbers 7,

2
1
| A(x)|2c i for all x sufficiently large.
Inlnx

This shows that the example which we discussed here is
essentially best possible.
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Ordinary differential equations (ODE) occur in seve-
ral branches of science and technology. One example
may be study of particle interaction in electrorheo-
logical (ER) fluids. These are fluids whose properties
change when they are exposed to an electric field.
These fluids have important applications in many
fields, automotive industries in particular. Calcula-
tions of interactions between particles suspended in
fluid are carried out through the solution of ODE with
regular singular point. Series solutions to such prob-
lems provide highly accurate results if a large number
of terms in the series expansion are included. Based
on this, several routines, to be used as a package in
Computer Algebra System Maple®, are developed to
solve the linear homogeneous ordinary differential
equations with a regular singular point. These fast
and efficient algorithms show significant improve-
ments over existing routines in terms of memory and
computational time requirements. The present algori-
thms provide the correct answer for many differential
equations much more efficiently. Using these tools, a
large number of terms in the series expansions can be
included to get highly accurate solutions of ordinary
differential equations.

COMPUTER Algebra Systems (CAS) are simply the pro-
grams which enable one to manipulate mathematical ex-
pressions symbolically. One of the biggest attractions of
CAS is their ability to manipulate long expressions. For
most computer literates, the word computing means
number crunching or numerical calculations. Manipula-
tion of complex mathematical expressions is considered a
daunting task for computers. Before computers appeared
on the scene, a calculation usually consisted of a mixture
of numerical calculation and calculation by mathematical
formulas or algebraic calculation. All the numerical cal-
culations were preceded by a manipulation of algebraic
formulas, if the work was to be within the bounds of
what is humanly possible. In the 19th century, several
large calculations have a substantial number of formula
manipulations. Among the famous calculations was Le
Verrier’s calculation of the orbit of Neptune, which
started from the disturbances of the orbit of Uranus, and
led to the discovery of Neptune. The most impressive and
probably the largest calculation with pencil and paper is
by the French astronomer Charles Delaunayl. He took 10
years to calculate the orbit of the moon as a function of
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time, and another 10 years to check it. He would need
only about 10 min if he had a computer with algebraic
manipulation capabilities like Maple®.

It is for such large and complicated algebraic expres-
sions, scientists developed such systems which can share
the burden of doing algebra in simplifying the mathe-
matical expressions. Computer algebra can save both
time and effort in solving a wide range of problems. In
general, the solution obtained through CAS is much more
accurate than the traditional techniques. A major problem
in the manipulation of complicated algebraic expressions
is intermediate expression swell. CAS are well equipped
to handle such problems through thoughtful program-
mingz. A lot of problems, which were stopped in the past
due to their huge size, can be solved using these systems.
Algebraic solutions are always exact as opposed to their
numerical counterparts. Errors arising from rounding and
truncation of numerical quantities in the intermediate
steps make the final solution approximate and sometimes
unacceptable. On the other hand, the accuracy in CAS is
controlled by software; therefore the user has total com-
mand over level of accuracy needed. Several applications
of computer algebra systems were illustrated in refs 2, 3.

Ordinary differential equations with ordinary or singu-
lar point occur extensively in several branches of sciences.
The exact solution of these equations is one of the most
important requirements in many scientific applications.
One of the current applications is in studying the behav-
iour of electrorheological (ER) fluids. ER fluids are made
by suspending electrically susceptible particles in fluid.
When an external electric field is applied to the system,
the viscosity of the ER fluid can change by an order of
magnitude. These fluids are being studied in particular by
the automotive industry with a view to creating new
vibration-control devices, clutch mechanisms, etc. The
research in this field has diversified in two directions,
studies of the properties of ER fluids by the experi-
mentalists in order to manufacture a suitable ER fluid,
and theoretical studies by applied mathematicians and
physicists. The theoretical studies, which at this time are
still in their early stages, are to investigate systems, such
as suspensions, that show strong departures from the
simple Newtonian laws of fluid flow. The first calcula-
tion of the effective flow properties of a suspension in
terms of its constituents is usually taken to be Einstein’s".
For a comprehensive review of this topic, the reader is
referred to Batchelor® and J eftrey and Acrivos®.

Latta and Hess’ studied the problem of incompressible
potential flow past a sphere in contact with a plane. The
velocity at large distance is taken to be uniform and par-
allel to the plane. This problem is a simple example where
we can exploit CAS in order to solve a second order
ordinary differential equation with a singular point at the
origin.

Due to the singular point in the differential equation, it
is usually solved numerically by using a series expansion
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about the singular point to get the first steps of the nume-
rical solution.

Many results for lubrication theory problems can be
obtained by considering only the flow in the gap between
the close surfaces. Other results require a solution for the
flow outside the gap. Attempts to include the effects from
outside the gap sometimes lead to unusual problems in
the solution of ordinary differential equations. An exam-
ple of such a problem is the calculation of the couple act-
ing on a sphere of radius a and the couple acting on a
plane wall, in the case in which the sphere moves parallel
to the wall, a distance % from it. O’Neill and Stewartson®
studied this problem using matched inner and outer ex-
pansions, and left unsolved some questions connected
with the numerical constants they obtained.

Latta and Hess’ and O’Neill and Stewartson® used nu-
merical methods for solving such problems, but these
methods do not provide adequately accurate solutions.
Series solution is another method for solving such equa-
tions. The numerical solution can be replaced with a
large number of terms in the series solution. By expand-
ing this series solution along the axis and matching it to
an asymptotic solution, we obtain a solution that is more
accurate than a numerical one, with less effort. It is only
possible if efficient algorithms and programs are avail-
able in computer algebra systems. In order to fulfil these
requirements, we developed a fast and efficient algorithm
for series solution of the ordinary differential equations
for the computer algebra system Maple®. The older ver-
sion of the software used simple textbook treatment for
the topic. Programming errors and simplified treatment
gives several errors in the solution and memory and time
requirement are enormous. The old version of Maple
used the conventional textbook approach to find the coef-
ficients. But they are not well suited for research prob-
lems. In this study, the recurrence relations are directly
obtained, which has resulted in the improvement of time
and efficiency, as shown in the text that follows.

In view of the above considerations, we can start with
our first design decision: in which form do we return our
solutions? The aim of the package is to address differen-
tial equations arising in research problems. Therefore we
have decided to return only explicit series, calculated to
as many terms as requested (within memory limits). It is
assumed that the user will present an equation (or set of
equations) containing coefficient functions that will need
to be expanded, and that the user will ask for many terms
of the series solutions. Because the second-order case is
so common, it makes sense to include a special code for
that case whenever there is a useful gain in efficiency.
Another special case that should be considered separately
is that of a linear equation compared with a nonlinear
one. Again, the gains in efficiency and the common occur-
rence of linear systems argue for special code.

A final consideration in the design of the package, one
that every package must be aware of, is that returning no
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solution is better than returning a wrong solution. There-
fore it is important to make clear, both in the theorems on
which the programming is based, and in the programs
themselves, exactly what class of equations can be solved
by the current method.

The present program, dsolve2, expects as input a linear
ordinary differential equation and an expansion point
about which the solution is desired. A brief review of lin-
ear differential systems and the classification of the expa-
nsion point are given.

The general linear nonhomogeneous ordinary differen-
tial equation is of the form

n n—1

—y(X)+ p,_ 1(X) ,Hy(x)+ -+

Po (X)y(X) = f(x),

P (x) )

which may symbolically be written as

L(y) ={p,0" +p, 0" '+ +pd+pyty=fx),

where L is a linear differential operator of order n. The
coefficients pg, pi, p2, ... ,pn and the nonhomogeneous
term f(x) are continuous, single-valued functions of x, de-
fined on an interval [a, b].

The linear differential eq. (1) together with boundary
conditions on y(x) or its derivatives forms a linear differ-
ential system. However, usually we shall have to solve
eq. (1) without boundary conditions, requiring the defini-
tion of a general solution. The general solution of eq. (1)
can be written as

Y=yt yp,

where y, is the complimentary function and y, is the par-
ticular integral.

Let the origin be a regular singular point of the second
order homogeneous linear differential equation Ly=0.
Rewrite Ly =0 as

2

Y <00 v =0, @)
k=0
where
Ool)=1,
0,(x)=x o Pri\X) k(x) k=1,2.
Do(x )

Since the origin is a regular singular point, Q;(x) and
(O»(x) are analytic in origin. Let

00 =Y ¢, 3)

i20
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and let yi(x) and y,(x) be two fundamental Frobenius se-
ries solutions related to the origin. Then the first solution
vi(x) corresponding to the larger root r; of the indicial
equation,

F(ry=r(r=D+q;’ +q§” =0, @
correct to Oy is given by
N = Zy@ L) =0, 5)
where
—Z[(’i + gy + g1y
N n>1

F(r +n)

The second linearly independent Frobenius series solu-
tion y,(x) corresponding to the second root r, of the indi-
cial equation can be found as follows, (r; —r, #0 and is
not integer):

The second solution y,(x) correct to O(x
given by

DH) is then

()= Zy@ L w20, ©)
where
=Y (s + a2 + a2
y,§2> == , n=1.

F(r,+n)

When 7» —r, =0, the second linearly independent solu-
tion y»(x) correct to O(xDH) is given by

D
Py ) =3 ()00 + Y yix, ™)

n=1
where

1
e BN
! F(rn+l)

|2y + Y Py, +Z i+ Daw +anshy;

F(rl +n)

When r; —7, =N, a positive integer, the second Frobe-
. . . D+l - .
nius series solution y,(x) correct to O(x~ ) is given by
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D
720 = Ky (0)lnx+ Y yia ™, ®)
n=0

where

%

n—1
_Z[(”z + j)qglzj +q15%)j]y;
=0
Yn =

F(ry+n)

K-1
=Y Loy + e+ a1
__Jj=0

N

1 1 1
K (2n—N)y§3N+2 q(j)yig—)N—j
j=1

‘ n ‘

1
- Z[(”z +j)q1512j + qg%)j]yj
« j=0
Yn = 5
F(r,+n)

n>N+1.

The coefficient of y}, is F(r1), which is zero.

Several routines are developed using the above recur-
rence relations to find the series solution of linear ODEs.
The program is divided into several small routines to
carry out specific tasks. The efficiency of the programs
was improved with the help of a number of simplifica-
tions used in intermediate steps. In computer algebra sys-
tems, these improvements are of utmost importance. The
speed and efficiency of the programs allow users to obtain
a large number of terms in the series expansion which re-
sults in highly accurate solutions. The results show a
tremendous improvement, in terms of speed and memory
requirements, over the textbook approach. As an exam-
ple, a comparison of the CPU time and memory require-
ment for the present algorithms is made with the textbook
approach and the results are shown in Table 1. All pro-
cessing is carried out on a PC.

It is evident that for higher number of terms considered
for the solution, the conventional approach for coefficient

Table 1. Comparison of speed and efficiency between present routi-
nes and standard textbook approach, when roots of the indicial equa-
tion are different

determination is highly inefficient compared to the pre-
sent proposal, both in speed and memory.

Ordinary differential equations frequently occur in
several branches of mathematical sciences and their ap-
plications are many. Numerical solutions to these equa-
tions are often estimated but may not be sufficiently
accurate in some applications. For example, Latta and
Hess’ and O’Neill and Stewartson® could not get the desi-
red accuracy in their results using numerical methods.
Series solution may provide an answer to such problems,
but to achieve highly accurate results, a large number of
terms in the series are required. Fast and efficient pro-
grams are essential for this purpose.

To fulfil the above experiments, several fast and effi-
cient algorithms were developed to solve linear ordinary
differential equations. These algorithms are programmed
in for use in computer algebra system MAPLE® so that
CAS users can make use of a large number of terms in
the series solution. This enables the users to obtain
highly accurate solutions to the ODEs. It was demon-
strated that the presently developed algorithms/routines
show tremendous improvement over the textbook ap-
proach in terms of efficiency and speed.
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CPU time (seconds) Words
Order Standard Present Standard Present
25 1298 3 720,764 361,673
30 5228 6 1,048,384 372,238
35 19,194 9 1,326,861 372,238
45 1,59,565 15 2,391,626 394,432
75 - 48 - 396,263
100 - 92 - 604,734
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