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Let a function y(x,y), biharmonic in the semi-infinite
strip {- 1/2 <x <1/2, y <0}, be such that the function
and its normal derivative vanish on the side walls
x=%1/2. We consider the problem of determining
this function when we are given y(x,0) and Vzw(x,())
on the short edge y = 0. First, we give a direct method
of obtaining a biorthogonality relation among the
eigenfunctions and then give a formal solution of the
boundary value problem using this relation. Next we
show that if we attempt to use this solution using a
finite number of terms of the series, it is inferior to a
solution where the expansion coefficients are calcu-
lated using a least squares procedure. This is a sur-
prising result considering that for Fourier series, the
Fourier coefficients are always optimal.

THE biharmonic equation
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arises when solving problems in a number of areas of
science and engineering, including elasticity and slow fluid
flow. Since the equation is linear, it is natural to seek
separable solutions appropriate to the given geometry and
then superpose these to satisfy the given boundary data.
Whereas when seeking harmonic functions, i.e. those that
satisfy Laplace’s equation, one is led to essentially real
Fourier series, here one is led to series of biharmonic
functions, the Papkovich—Fadle eigenfunctions, which
are essentially complex. In the former case one has the
orthogonality property of the trigonometric polynomials,
a consequence of the self-adjointness of the reduced
Laplace operator, to uniquely determine the expansion
coefficients. On the other hand, in the latter case there are
only special forms of the boundary data, those corres-
ponding to the so-called canonical problems, for which
biorthogonality (BO) relations hold among the eigenfunc-
tions which permit the complex expansion coefficients to
be determined analytically.
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The purpose of the present article is to display an easy,
straightforward route to the BO relation in a canonical
problem and to point out a surprising behaviour of the
resulting series solutions. Although it is unlikely that there
is anything new in this article, it is almost certain that
these results are not widely known even among the prac-
titioners.

A biorthogonality relation

The region considered here is the semi-infinite strip {— 1/2
<x<1/2, y<0}. We will be seeking functions wy(x,y)
satisfying eq. (1) in its interior and such that y and
Jdy/dx vanish on x == 1/2. If we now assume separable
solutions of the form ({)(x)exy, where A is a complex sca-
lar, ¢(x) will have to satisfy the reduced biharmonic
equation
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ym 0(x)=0. (2)

The factorization in eq. (2) suggests that we write
u= 0"+ A’0; the equation can then be written as the pair
of equations

u=0"+A0, u”+ N Nu=0, (3)

where the primes denote differentiation with respect to x.
Rewrite this as follows

dz

-t ru=e, )
2
—%uzkzu. (5)

Now, if we let U be a two-vector defined by U’ = (0,u)
(ref. 1), eqs (4) and (5) are now of the standard form:

LU=MT, (6)
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where the operator L is given by

dz
I
L= , |- (7
. 4
dxz

If U" = (0,u) and ¥’ = (3,v) are a pair of two vectors, their
inner product is now defined in the usual manner

@0y = Lo (x)+u(x) ()t dr. (8)

For such pairs whose components also satisfy the boundary
conditions ¢(+ 1/2) = ¢’(+ 1/2) =v(+ 1/2) =v'(+ 1/2) = 0,
a straightforward computation shows that

(V. LU) ={U, L*V), 9

where the adjoint operator L* is given by

dz
- 0
2
[x=| , (10)
-4
dxz

Note that to derive eq. (9), the boundary conditions had
to be used to eliminate the boundary terms arising from
an integration by parts. Now, if U is an eigenvector of L
corresponding to the eigenvalue A as in eq. (6) and V is
an eigenvector of L* corresponding to the eigenvalue U,
i.e. L*V =V, eq. (9) implies

W, LUY =¥ , U= Y, Uy=(U,L*V)

=U,uy=uXU, V). (11)

It follows from eq. (11) that (A* — u?) (¥,U) = 0 and so if
W A, {¥,Uy=0. This is the BO relation that was sought.
It should be noted how easily and directly it follows from
the factorization of the reduced biharmonic operator in
eq. (2). This may be compared with the somewhat artifi-
cial derivation given, for example, in Joseph®.

We will use this BO relation in the next section to for-
mally solve a boundary value problem for the biharmonic
equation.

Series solutions for a canonical boundary value
problem

Suppose that we wish to solve eq. (1) in the semi-infinite
strip given that (i) y(x,y) and its normal derivative vanish
on x =+ 1/2, (ii) Y(x,y) > 0 as y — — oo, and (iii) it is
subject to the short-edge boundary conditions

Y(x.0) = p(), VY(x.0) = ¢(x), (12)

where p(x) and ¢g(x) are sufficiently smooth; we shall
also assume the compatibility conditions p(+1/2)=
p’(£ 1/2) = 0. This formulation bears, for example, on the
problem of the bending of a semi-infinite strip under
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appropriate edge conditions’, and on the problem of the
creeping flow of a liquid with a free surface®.

In order to keep matters simple, let us assume here that
p(x), g(x) and y(x,y) are all symmetric in x; this is no
limitation as the antisymmetric case can be handled in
a similar way and the general case can be handled by
a superposition of the two. In this case the vector eigen-
function U(x;L) = (0(x;X), u(x;))) is given by

O(x;A) = x sinh x + by cosA x, u(x;A) =2A coshx,
(13)

where by =—1/2 tanA/2 and the eigenvalue A satisfies the
equation

sinh = —A. (14)

All the eigenvalues are complex and if A is an eigenvalue,
so are — A and A . We order all eigenvalues in the first
quadrant in increasing values of their real parts; the
first two eigenvalues, for example, are approximately
A1 =4.21239 +2.25073i and A, = 10.71254 + 3.10315i.

It is a simple matter to verify that the vector eigenfunc-
tion 77 (x;u) = (% (x;10), v(x;1)) corresponding to the eigen-
value U of the adjoint L* is given by

v(x; 1) = x sinlLx + by, cosLy,
(15)

where v(x;u) satisfies the reduced biharmonic equation
and | satisfies eq. (14). The BO relation derived earlier
guarantees us that if L= A, {V,U) = 0. On the other hand,
a direct calculation shows that if p = A

X (;1) = 24 cosux,

A
F(x;0), U(x;A)) = —2cos” > (16)
We are now in a position to write down a formal solution
to the boundary value problem posed above using the BO
relation. Let us write

A
0) B 200)

q(x) ) % 7
= ZAK[
Y

where the sums are over all eigenvalues with positive real
part alone; this is to ensure boundedness for large nega-
tive y. Note that the sums in eq. (17) yield real functions,
since the eigenvalues appear as conjugate pairs; also A4
are complex scalars that have to be determined from
the boundary data. If we now take the inner product of
eq. (17) with F(x;u), all the terms on the right vanish,
except for the one corresponding to A= . Thus we get
an explicit expression for the scalars

a7

x sin Ax + by, coshx
2Ah cosx ’

26 12
A = ——— —1/2[p (x) {2k cosAx}+g(x)
cos” 5

{xsin Ax + b, cosAx}]dx. (18)
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For theorems on the conditions under which biorthogonal
series such as eq. (17) converge, see refs 2, 5 and 6; for
completeness theorems related to the Papkovich—Fadle
eigenfunctions see, for example, ref. 7.

How good is this solution? It is known that if one insists
on solutions that are well-behaved at the corners, the
solution to the problem is unique; thus if the series in
eq. (17) converge to the boundary values, they must
represent the unique solution. We consider two cases here:
Case 1 with p(x) = (1/4 — x*)*, g(x) = 0 and Case 2 with
p(x)=0, g(x)=1. Note that in Case 1 p(1/2) =p’(1/2) =0,

and so the compatibility conditions are satisfied in both
cases. We will compare the results of calculations based
on eqs (17) and (18) with those using a least squares (LS)
procedure to determine the coefficients 4, (ref. 8). It was
the expectation of the author, based on the behaviour of
Fourier series and on the general high regard that one
normally has for explicit formulae, that the BO procedure
would be superior.

Figure 1 a and b displays the results of calculations for
Case 1 using ten terms in eq. (17), while Figure 1 ¢ and d
shows the results using 100 terms. In the former case, BO
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Figure 1. Results of calculations for Case 1 with p(x) = (0.25 — x*)* and ¢(x) = 0. @ and b, N = 10;
cand d, N=100. ————, p(x) and g(x); ---------- , Least squares; - - - - - - - , Biorthogonality.

Table 1. Complex expansion coefficients for Case 1 with p(x) = (1/4 — x>, g(x) =0
Least squares Biorthogonality
n N=10 N=100 A,
1 0.82131E-02 + 0.58585E-01i .10084E-01 + .58431E-017 .10090E-01 + .58428E-01i
2 0.13836E-01 — 0.28566E-02/ .11388E-01 — .39122E-02/ .11380E-01 — .39077E-02i
3 —0.62850E-02 — 0.25690E-02{ —.42270E-02 — .53792E-04i —.42162E-02 — .59127E-04i
4 0.25757E-02 + 0.40177E-02{ .19791E-02 + .36672E-03i .19663E-02 + 37233E-03i
5  0.33117E-03 — 0.36354E-02i —.10916E-02 — .31967E-03i —.10770E-02 — .32515E-037
6 —0.22230E-02 + 0.17665E-02¢ 67372E-03 + .24653E-03i .65732E-03 + 25154E-03i
7 0.20200E-02 + 0.10154E-02{ —.45114E-03 — .18819E-03/ —.43314E-03 — .19247E-03i
8  0.22989E-03 — 0.18793E-02/ 32153E-03 + .14575E-03i .30204E-03 + .14904E-037
9 —0.73306E-03 — 0.45717E-03{ —.24081E-03 — .11530E-03/ —.21997E-03 — .11739E-03i
10 — 0.95548E-04 + 0.62707E-04i .18782E-03 + .93368E—04i .16579E-03 + 94053E-04i
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does better as regards representing p(x) but fares worse,
much worse, as regards representing g(x); in the latter
case, both do well as regards p(x) but as regards g(x),
BO shows improvement. The errors are still very large
towards the end point and it is not clear whether they will
improve with more terms. There is no doubt that LS is far
superior. A similar situation exists in Case 2, shown in
Figure 2, where once again BO fares poorly.

What is going on here? It appears that the convergence
of the BO series is not uniform in x. The number of terms
required for given accuracy depends on the position on

the interval; this is happening when the boundary data are
so smooth, whereas in applications we can expect more
badly behaved data. Another puzzling and disturbing
doubt is that if two methods of evaluating the coefficients
A, lead to such apparently different results, what has hap-
pened to uniqueness? In fact, what had been expected
was that the LS coefficients would approach the BO co-
efficients as the number of terms of the series used, N,
became large. As can be seen from Tables 1 and 2 this is,
indeed, happening. The position is that if A is the nth
coefficient as given by BO, then the nth coefficient given
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Figure 2. Results of calculations for Case 2 with p(x) =0 and ¢{x) =1. @ and b, N=10; ¢ and d,
N =100. ———, p(x) and g(x); ------—-- , Least squares; - - - - - - - , Biorthogonality.
Table 2. Complex expansion coefficients for Case 2 with p(x) =0, g(x) =1
n N=10 N=100 A,
1 .66146E-01 — .10866E-017 .65060E-01 — .10781E-01i .65056E-01 — .10779E-01i
2 —.83334E-02 — .21050E-02i —.69188E-02 — .14701E-02i —.69144E-02 — .14724E-02i
3 32992E-02 + 22777E-02i 21292E-02 + .78934E-03i 21237E-02 + .79206E-03i
4 —.12445E-02 — .25825E-02i —.95099E-03 — .44085E-037 —.94445E-03 — .44371E-03i
5 —.38300E-03 + .21780E-02{ 51697E-03 + .27068E-037 .50949E-03 + .27347E-03i
6 .14279E-02 — .98960E-03; —.31796E-03 — .17903E-037 —.30959E-03 — .18158E-037
7 —.12260E-02 — .69015E-037 .21313E-03 + .12536E-037 .20393E-03 + .12753E-03i
8 —.17415E-03 + .11624E-02i —.15236E-03 — .91845E-04i —.14241E-03 — .93514E-04i
9 .45916E-03 + .29602E-03i .11457E-03 + .69885E—-04i .10394E-03 + .70938E-047
10 .62006E-04 — .39341E-04{ —.89767E-04 — .54968E—-04i —.78521E-04 — .55304E-04i

CURRENT SCIENCE, VOL. 85, NO. 7, 10 OCTOBER 2003



RESEARCH ARTICLES

by LS does indeed tend to 4), as N — oo. However, for
a fixed N the LS procedure approximates the boundary
conditions much better than if the asymptotically correct
coefficients were used. This means that for finite W, it is
best to use LS. This is an unexpected result.

Conclusion

We have suggested a direct method for obtaining the BO
relation for a canonical boundary value problem for the
biharmonic equation. This simple method depends cru-
cially on the possibility of factorizing the reduced ope-
rator. We believe that the method will be applicable in
other situations where the underlying operator can be
factorized.

Calculations with two sets of boundary data have
shown that if a finite number of terms of the series is
used, the LS procedure yields solutions that are much
more accurate than those that would be obtained using
the coefficients given by the BO procedure. This is quite
different from what obtains in the case of Fourier series.
Let 0, be orthonormal on [a, b]; let ¢, be the nth Fourier
coefficient of f(x) relative to 0, i.e.

ey = [ F(0)0,(7) di
and let

5, () =Xjc,9,(x)

be the nth partial sum of the Fourier series of f. Let
t,(x)= Xy, (x). Then by Theorem 8.11 of Rudin’

[1r-sPac<[ | f-1,F dr,

and equality holds if and only if ¥, =c,, m=1,2,....In
other words, the Fourier coefficients lead to the best pos-
sible partial sum representation of f in the mean square
sense. A similar result does not seem to hold when bihar-
monic eigenfunctions are used to represent biharmonic
functions in the rectangle.
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