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Even after almost two centuries of in-
tense effort on the part of many mathe-
maticians, engineers and scientists, the
Navier—Stokes equations

u, — VAu + uVu + Vp = f, (1)
div u = 0,

have continued to charm, intrigue and
baffle their many devotees. Whether or
not one agrees with the oft-quoted state-
ment that turbulence is the last unsolved
problem of classical physics, one will
certainly admit that we are still far from
solving these equations in any generality,
even in fairly simple situations; and we
continue to be surprised by new features
that crop up in more complex situations.

The Navier—Stokes equations are those
that govern the motion of an incom-
pressible liquid having internal friction
or viscosity. These equations, discovered
independently by Navier (1822) and
Stokes (1845), are a mathematical formu-
lation of Newton’s Second Law of Mo-
tion (rate of change of momentum o<
external force) extended to a liquid with
internal friction; strictly, they hold only
when the internal stress is linearly pro-
portional to the strain rate. In eq. (1), u is
the liquid velocity vector field, f the
external force field and p the scalar pres-
sure field, all in a domain & in a Euclid-
ean space R", v is the kinematic viscosity,
an internal fluid friction parameter.
Typically, given f, we might want to de-
duce u and p, with say u vanishing on the
boundary 0Q. Now, from a practical en-
gineer’s point of view, the equations are
important because where ever liquid mo-
tions occur, they come into play. Thus,
they bear on the flow of oil in pipelines,
the movement of air in the lungs, in es-
timating the drag on a car or train or the
power consumed by a pump. For the
mathematician or theoretician, the equa-
tions are interesting and challenging be-
cause they are intrinsically nonlinear and
are a source of beautiful examples of
singular perturbations, bifurcations and
other manifestations of nonlinearity.

It is an unfortunate, but perhaps ines-
capable fact that the different groups that

use and work on the Navier—Stokes equa-
tions have little to do with one another.
Practical engineers use empirical rules
based on past experience, approximate
solutions and numerical computations to
‘solve’ the practical fluid problems that
arise in practice. Engineering scientists,
applied mathematicians and physicists
try to get exact and rational approximate
solutions to very specific problems usu-
ally involving idealized geometries. It
has been pointed out that fluid mechanics
is a field in which knowledge of the field
is obtained only from the slow accumula-
tion of specific examples. Finally,
mathematicians are interested in the exis-
tence, uniqueness and smoothness of
solutions to eq. (1) in arbitrary domains
and dimensions. Although the three
groups could obviously benefit by inter-
acting with one another, this rarely
happens because their interests and voca-
bularies appear so different. The mathe-
matical works appear so difficult and
impenetrable and the final results so
‘useless’, that most non-mathematicians
completely ignore the mathematical lit-
erature on the Navier—Stokes equations.
Under these circumstances, any attempt
to bridge this divide must be applauded.
The book under review by Hermann
Sohr, who has himself contributed to the
mathematical literature, has as its objec-
tive the development of ‘an elementary
and self-contained approach’ to the
mathematical theory of the Navier—
Stokes equations in a domain in Euclid-
ean space. One should not be fooled by
the phrase in quotation marks: in order to
even browse through this book one
would need a reasonable familiarity with
real analysis and the basic tools in Hil-
bert and Banach spaces. The book con-
sists of five chapters entitled: (i)
Introduction, (ii) Preliminary results, (iii)
The stationary Navier—Stokes equations,
(iv) The linearized nonstationary theory
and (v) The full nonlinear Navier—Stokes
equations. In the first chapter, after in-
troducing the Navier—Stokes equations
and some notation, an overview of the
functional analytic approach is pre-
sented, which is in fact a summary of the
last three chapters. In particular, the
Stokes operator is introduced, which is
used in all the later chapters. Surpris-
ingly, but typical of the book, the defini-
tion of the various spaces that are
needed, the L?-spaces, the spaces of dis-
tributions and the Sobolev spaces, are
given after the overview, where they are
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already used; if the order had been re-
versed, the novice reader would suffer
less of a shock. A similar idiosyncrasy
occurs in chapter II. The useful section
on the basic facts of Banach spaces, Hil-
bert spaces, the Laplace operator and the
resolvent follows the earlier sections on
embedding properties and the nabla and
div operators. This chapter has a large
number of lemmas, the proofs of many of
which are left to the references. The fact
of the matter is that a great deal of preli-
minary material has to be mastered before
we can attempt to tackle the Navier—
Stokes equations.

The steady Navier—Stokes equations,
where the time is absent, are studied in
chapter III. Sohr begins with a discussion
of ‘weak solutions’ of the Stokes equa-
tions

—~VAu + Vp = fidivu = 0, (2)
ulzo = 0.

Note that these are linear equations ob-
tained from the steady version of eq. (1),
by dropping the nonlinear convective
terms u.Vu. In introducing the concept of
weak solutions, Sohr says ‘The idea is
the following: It seems to be rather diffi-
cult to prove directly the existence of
classical regular solutions. Therefore, we
argue indirectly. In the first step, we get
rid of the pressure p and construct a
so-called weak solution using a Hilbert
space argument. In the second step, we
construct the pressure p and prove regu-
larity properties of u, p under smooth-
ness assumptions on f and Q’. This is the
strategy used throughout the book: deter-
mine a ‘weak solution’ (in an appropriate
Sobolev space) which satisfies an auxi-
liary equation without the pressure, con-
struct an associated pressure so that the u
and p now satisty eq. (2) or the relevant
equation in a distributional sense, and
finally prove regularity under appropriate
assumptions. Whereas the analysis of the
Stokes equations is carried out for n > 2,
for the stationary Navier—Stokes equa-
tions the nonlinearity forces the author to
restrict himself to the cases n = 2, 3.
Although the overall strategy remains
the same in the linearized nonstationary
theory of chapter IV, naturally, some new
spaces and operators need to be intro-
duced to handle the integrations in time.
Finally, the full Navier—Stokes equations
(eq. (1)) are dealt with in chapter V.
Here, once again, n is restricted to be 2
or 3. As before, a weak solution has to be
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defined, along with the auxiliary pres-
sureless equation that it satisfies, and the
same general procedure has to be fol-
lowed, but with additional hurdles posed
by the nonlinearity. Both in the lin-
earized nonstationary theory and the case
of the full Navier—Stokes equations, cer-
tain energy equalities and inequalities
appear to play a significant role. In the
latter case, there are differences even
between the two-dimensional and three-
dimensional cases: sometimes additional
conditions are required in the n = 3 case
to prove the existence of weak solutions.
We note that theory is developed for a
completely general domain Q. This means
that it applies to arbitrary, unbounded,
non-smooth domains. It is on this
account that the restriction to the lower
dimensions appears in the nonlinear case.
I should point out some of the
strengths and weaknesses of the book.
Although a fair amount of background is
needed on the part of the reader, there is
no doubt that the author has attempted to
present a unified and self-contained
account of the theory. The book is well
written and not unnecessarily wordy.
There is an up-to-date bibliography and a
nice index. And where proofs are given,
there are enough details that a reader
with the proper background will be able
to follow the argument. In my opinion,
the author has succeeded in what he set
out to do. My main complaint is that
often the proofs and the lines of argu-
ment do not seem to be properly moti-
vated. For example, when a weak solution
is defined, no reasons are given as to
why that definition has been chosen.
When a particular space is chosen for
some variable, we are not told the basis
for this choice. This will certainly be a
stumbling block for the non-expert. An-
other small problem with the book is that
at times, as pointed out earlier, the order
of presentation is not the natural order.
Who would benefit from reading this
book? Certainly, a mathematician who
wishes to know what the important is-
sues concerning eq. (1) are and what has
been achieved, would find this an excel-
lent source. Equally, a mathematically-
minded student, with a good grounding
in analysis and who has decided to work
in this area, or the teacher who wants to
teach a course on this material would
find this a valuable text. Not so obvi-
ously, the book would be of use to a
dedicated teacher of analysis or func-
tional analysis, who wishes to show his
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students that analysis really does have
applications outside pure mathematics.
The closed graph theorem, the Fisher—
Riesz theorem, the fixed point principle,
Fubini’s theorem, the Hahn—Banach
theorem, Holder’s inequality, the Leray—
Schauder principle, the Riesz representa-
tion theorem and many other classic
theorems are routinely used in this work.
Will not a bright young student be better
motivated to study analysis, if he sees the
‘practical’ use of what he is learning? I
will now conclude with a possibly even
more shaky suggestion. I think there are
ideas in this book which may possibly
suggest certain methods of actually ob-
taining rational or good approximate so-
Iutions to  specific  fluid-dynamic
problems. To derive this benefit, how-
ever, one would have to take the trouble
to learn at least the rudiments of a differ-
ent language. It may well be worth it. I
think Sohr has built a bridge that con-
nects the practising fluid dynamicists to
the mathematical fluid dynamicists and,
hopefully, it will be used.
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USA. 2002. 439 pp. Price: US$ 29.95.

Ecology as a science was once thought
not refutable by the criterion of conjec-
ture and refutation of Karl Popper; some
even thought it was a weak science full
of tautologies and circular reasoning.
Any scientific theory should provide for
a method to test it. In physics, the same
notion prevailed about relativity —a re-
markable theory; but when proposed, not
enough experimental proof was avail-
able. However, one is not free to propose
any type of theory — by any stretch of
imagination and hope it would be proved
right some day. In physics, experimental
proof may be delayed, but a theory may

be popular because of strong mathemati-
cal proof that may exist for it. These
arguments are there in the book under
review but not in sufficient detail. For
example, the classic case often cited but
not found in the book, is Clements con-
cept of a climatic climax. Clements pre-
dicted that ecological succession always
leads to a mono-climax determined by a
particular kind of climate.

Ecological succession always ended in
a form of dominant vegetation represent-
ing the mono-climax. If a mono-climax
were not found, Clements would have
said: ‘If we wait long enough we would
get it’. This theory of mono-climax is a
weak one because it gets expanded to
accommodate observations not predicted
by it when first proposed. May be the
next edition of the book can take care of
such serious lacunae in the first chapter.
Despite all this, one cannot help falling
in love with the book for its sheer clarity
and directness, and the refined experi-
mental approach to the problem of eco-
logical stoichiometry. The ideas have
been presented lucidly from the point of
concepts and definitions.

There have been attempts to develop
the ideas and the main theme of the book
from as far back as 1913, when Hender-
son published his Fitness of the Envi-
ronment. It was considered a classic then
on the elemental composition of living
things. The first work on ecological
stoichiometry as a concept proper was by
Redfield in 1958, which became epony-
mous as Redfield ratios, while the latest
on the subject is Reiner’s in 1986. The
book has its relevance from many other
angles too, be it global warming or the
greenhouse effect, the stable concentra-
tions of CO, and O, in our atmosphere,
nutrient cycling in aquatic ecosystems
and many more. Reading the book has
been like going through a journey where
landscapes generate a veritable kaleido-
scope of ideas and concepts. Each organ-
ism could be viewed as a stable steady
state, either converting O, to CO, or vice
versa. After all, for the ecosystem homeo-
stasis is just the resilience of a system.
Each ecosystem, including the whole
biosphere, could be viewed similarly.
The concepts of energetics of ecosystem
and non-equilibrium thermodynamics
developed by Ilya Prigogine could be
applied to them, as amply exemplified in
chapter 7 of the book under review. The
book abounds in conceptual models that
can be employed in physiology and evo-
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