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Formulae of Newton and Euler — the
formal derivative and trace
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The well-known formulae of Newton and Euler on
roots of polynomials are shown to follow from a gen-
eral result relating the formal derivative of a polyno-
mial and the trace map.

§1. Let k be a field and f(X) a monic polynomial with
coefficients in k£ and with distinct roots. We denote by
f'(X), the formal derivative of ' (X). We recall a classical
result, due to Newton which relates the sums of powers
of the roots of f'to the coefficients of the polynomial f”.
Let f=X"+a, X'+ +ay and o, ..., 0, the (dis-
tinct) roots of . We denote by s;, the sum of the ith pow-
ers of the roots for i>1, set so=n, and a,=1. The
formula of Newton asserts that for all i, with 0 <i < n,

i

(n—i)a,_; = Zan—i+jsj'

J=0

A result of Euler is closely related to this; namely, under
the same conditions as above,

")

Z S0 if 0<i<n-2,

e f(@,)
=1if i=n-1.

The above theorems are usually proved by expanding cer-
tain rational functions into formal power series and equat-
ing coefficients. For instance, if f(X) =11, <;<(X-0,), we
have

SX) N1

2
i X

Newton’s formula follows by equating the coefficients of
X', 0<r<n-1. For a proof of Euler’s result, see ref. 1
(Lemma 2, p. 56) and ref. 2 (§46).
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The purpose of this note is to show that both the above
formulae follow from a general result which connects the
formal derivative of f(X) with the trace map of the regu-
lar representation of A[X]/(f), where & is any commuta-
tive ring and f any monic polynomial over & (see
Proposition 1). This result seems to be of some inde-
pendent interest. The proof is by a rather quaint inductive
argument on the degree of f.

§2. Let A be any commutative ring with identity, and
F=X"+a, X"+ - + ao, a monic polynomial of degree
n with coefficients in 4. Let B = A[X]/(f). Then B is a
free A-module with basis 1, x,...,x"", where x denotes
the residue class of X modulo (f).

We define an A-linear map 0p = 0: B — A, by setting
0()=0if 0<i<n—2and ¢ (x"") = 1. This gives rise to
the A-bilinear form (,): B X B — A defined by (A, W) =
0 (AW). The matrix of this form with respect to the orde-
red basis {1, x, x*,...,x" '}, being

0 - o 0 1
0 oo e 1 E
0 1 x *

* * *

is nonsingular. Hence we can associate an A-linear (in
fact B-linear) isomorphism 0. B — B* by setting for
b,b € B,

05(b)(D") = (b, b') = 6 (bD").
We state this as a lemma.

Lemma 1. The map 05: B — B* given by 0;=(b, b") =
o(bb’) is an isomorphism.

Next, for any element A € B, multiplication by A de-
fines an A-linear map A: B — B. The trace of this map
will be denoted trz, (L). We now state the first main
result.

Proposition 1. We have 03(f’(x)) = trp,. Equivalently,
for any A € B, ¢ (Af'(x)) = trg;4(A).

The proof is by induction on the degree of /. (One
could also argue by considering the minimal polynomial
of the ‘generic matrix’, use the classical theorem of
Euler, and deduce the above result by specialization.
However, our proof appears to be more direct and ele-
mentary). But, first we show that we can reduce the proof
to the case where f(0) = 0.

Lemma 2. Let f=X"+a, X"+ - +aX+a, and let
fi=X"+a, X+t aX

Let By be the ring (4[X]/(f)) = A[x,], where x| is the
residue class modulo (f}) of X. Then for 0<i<n-1,
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we have (a) trp(x')=try, (x]) and (b) O(f (x)(x)=
931 (A Ge(xp).

Proof. (a) We know that 1, x, ..., x" ' is a basis of B as
a free A-module. The matrix of the A-linear (multiplica-
tion) map x: B — B with respect to this basis is the ‘com-
panion matrix’

0 0 —a

1 0 _al

0 1 0 —a, |=M.
4,

Similarly, taking 1, xl,...,xln_l as basis of By/4, the matrix
of x: B, — B, with respect to this basis, is

0 - e 0
0 e e _al
. . :Ml-
0 -« - 1 —a,

Since trace is independent of bases, in order to prove (a),
we need only to show that o M = t»r M{ if 0<r<n-1.
This is trivial if »=0. So we assume » > 1. Let us denote
by E;; then n x n matrix with 1 at the j, jth place and zeros
elsewhere. Then M, =M + ayE; ,, so that M| =M" +W,
where W is an A-linear combination of words of length » in
Ei,i=2,..,nFE,i=12,..n;, and such that, £, , oc-
curs in each word. Since #r is additive, t#(W) is the sum of
the traces of each word in W. Let w be a word occurring in
W. Remembering that t(PQ) = tr(QP) for any two n X n
matrices P, O, to prove the result, we may assume that £, ,
is the last symbol in w. Let w=w,E} ,. Now # w# 0 only
if w, =FE, ;. This is, however, not possible, since w, is a
word of length atmost n—2 in the symbols E;,, i=2 and
E;; ), 2<i<n. It follows immediately that ## W =0 and
hence tr M" = tr M|, for 0 <r < n-1, proving (a).

To prove (b), first note that the formal derivatives of f
and f) are equal. We have to show that

0, (f ()(x") =85 (fx))x)),
or equivalently,
05 (f (0)x") =05 (f (x)x1).

Since f(X) is a monic polynomial, we can use the divi-
sion algorithm and write

S OX"=MX) f(X)+(X),
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where A(X) and p(X) are polynomials in 4[X], with de-
gree W(X)<n or w(X)=0. This implies that degree
A+ degree f< max(deg Af"(X)X', n—1). We have degree
F(X)X' < n—1+ i. Therefore deg A + deg f< max(n—1 + i,
n—1), and hence, deg A <max(i-1, —1) £ n-2, since i<
n—1. Now 0 (f’(x)x") = coefficient of the (n—1)st degree
term of the element f’(x)x’, and this is the coefficient of
the (n—1)st degree term of [L (X). Now let us compare this
with ¢ (f(x)x{). Namely, let f/(X)X ' =f' (X)X =MA +
W =M (f~ao) + = A f+ (W—aph) so that W = [+ agh
and A = A,. Hence

JIOOX"T =MX) £1(X) +(@ph(X) + p(X).

It follows that 05 (f'(xl)xli):coefﬁcient of the (n—1)st
degree term in aoA(X) + [ (X) = coefficient of the (n—1)st
degree term of [ (X), since degree A <n-2. This proves (b)
and completes the proof of the lemma.

The next lemma gives the crucial step in the induction
process. By the previous lemma, we are reduced to consid-
ering polynomials f'such that f(0) = 0.

Lemma 3. Let f=X"+qa, X"+ +a,X and /7 =x"1+
a X'+ o+ aX + ay. Let B=A[X)/(f) and B=A[X]/
(/). Letxand ¥ denote the images of X in B and B res-
pectively. Define 0z :8 — A4 by 0;(F)=0 if 0<i<
n-3,and ¢;(¥"*)=1. Then fori> I,

(a) trB/A(xi):tr'BN/A(Ei)a
() 05(x" £ (X)) =05 F f(F)).

Proof. Consider the surjective homomorphism of A-
algebras B — B given by x> X. Its kernel K is the
principal ideal of B generated by f(x). For each i with
i 21, we have the following commutative diagram with
exact rows:

0 > K - B —> B =0
zd i 5
0 > K - B —> B =0

Note that the map z: K — K is the zero map since xf(x) =
F(x)=0in B. The arrows are all A-linear. Since trg(x")=
trE/A(fi) +tryg, 4(2) and trg;4(z) = 0, part (a) of the lemma
follows.

We prove (b).

Let Xf'(X)=AMX)f(X)+u(X) where p=0 or deg
w<n-1. As remarked earlier, 05(x'f"(x)) = coefficient of
the (n—1)st degree term in W(X). Now f =X f implies
S(X)=X"(X)+ f(X). Therefore

XX (X)) + F(X) =MX) f(X)+R(X)

~ *)
= A(X).XF(X)+ p(X).
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Thus if i > 1, X divides i (X), so that u(X)= X{I(X) with
degree [[(X)<n—2. We can cancel X in the equation (*)
and write

XX =MX) (X))~ X7 (X)) +EX).
Hence

05 F 1/ (#) =05 (EF)
= coefficient of X" 2 in [i(X)
= coefficient of X" in p(X)
=0, (x" f/(x).

This completes the proof of Lemma 3.
We now turn to the

Proof of Proposition 1. Since 1,x, ..., x"!is an A4-
basis of B, it is enough to show that 5(f"(x))(x) = trz.4(x")
for 0<i<n-1. If i=0, 0(f'(x))=0(f"(x))=n and
trg4(1) =n. Suppose i > 1. Then Lemmas 1 and 2 apply
and we use induction on degree of f to complete the
proof. O

Corollary: (Euler’s Theorem). Let k£ be a field and fa
monic polynomial over & with distinct roots o, ..., Q.
Then

i

n a’
Y —L—=o0ifo<i<n-2
e f(@,)

=lifi=n—-1.

Proof. Let B = k[X]/(f) and x be the image of X in B.

Since f'has distinct roots, f(X) and f’(X) are coprime in
k[X], so that f’(x) is an invertible element of B. By
Proposition 1, we have tr(A) = 0(Af"(x)) for all A in B.
Let A = x'/f’(x). Then

x' i .
gl —— [0 () =0if 0<i<n-2
[f@J
and=1lifi=n—-1.
Now, r(x'/(f'(x))) =sum of the eigenvalues of the k-
linear map B — B defined by multiplication by x'/( f'(x)).
Since the eigenvalues of x: B— B are ay,...,0,, the

eigenvalues of x'/ f'(x) : B — B are precisely o/ (@),
j=1,...,n and we have,

xi < i ,
tr[m]—;aj/f(ocj).
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The corollary now follows.
The next proposition is a reformulation of Newton’s
formula in the general set up.

Proposition 2. Let 4 be any commutative ring and
fX)=X"+a. X'+ .- +aX+a any monic poly-
nomial. Let B = A[X]/(f) and x the image of X in B. We
seta,=1. Then, for 0 <i<n,

trp (X' +a, x4k, xta, )= (n-ia, .
Proof. The result is trivial for i = 0. Also, since x" +
A X"+ o+ aix + ag = 0, the statement of the proposi-
tion is clear, if i = n. Thus if degree f= 1, the result fol-
lows. Let n 2 2. We apply induction on degree of f.
Define f and B asin Lemma 3. Then for 1 <i < n—1,

trg 4 (X' +a, X7 b a,x)
~i ~iel ~
=trz, (X' +a, X7+ t+a, ;,¥)
= (n=1=i)a,; ~(1~1)a,.,

=—lay,;

by induction hypothesis, so that trg(x' + a, x” + ... +
an—i) = (n_i)an—i-
The completes the proof of Proposition 2.

Remark. We note that the formula of Proposition 2
gives an inductive procedure for the explicit computation

of the traces of powers of a linear transformation. For
example, we obtain,

_ 2y 2
rg/ X ==0,_, trg, (x")=a,—2a,,,
l N=—dd  +3 -3
15 a(X7) ==,y +3a,4a,_5 —3a,_3,....

We may also note the following. The statement of the
proposition can be displayed in matrix form as

1 al’l—l an_z e e al el
trx ay
0 1 an—l e e az n_z
tr x 202
1 Ay
trl na,

The inverse of the n X n matrix M in the above equation
is a matrix of the same form so that it is determined by its
first row, (1, ¢,1, Cu2y ..., C1), Where ¢, | =—a,; and for
2<i<n-1, Cpi=— i Copr1l — App Cpopra — *** — Uyl Cpi—
a,;. (This can be directly verified or proved by writing
the matrix M as 7+ N, so that M'=[-N+N— ... +
(-1)"'N""'. The successive powers of N can be computed
easily).
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Now
trx"! a;
trx"? _ ! 2a,
1 na,

and hence we have, for 1 <i<n,

n

rx" = ia; +(i+1)a; ¢, +(i+2)a, ,c, 5

+.+(n—-Da,_ic,_ i +1C,_;.

It can also be verified that ¢, ; is a polynomial in a,
of degree i with leading coefficient (~1)', so that #7 x' is a
polynomial in a,, of degree i, with the same property.
This yields a fairly explicit formula for the traces of
powers of a linear transformation in terms of the entries
of the companion matrix.
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A new plasma wave over low latitude
ionosphere during Leonid meteor
storm
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Leonid meteor storm is a unique astronomical event
that occurs once in 33 years. In order to investigate
the effect of Leonid meteor storm over low latitude
ionosphere, rocket measurements of plasma para-
meters were carried out on 18 and 20 November 1999
from Sriharikota, India. The meteoric activity was at
its peak on 18 November 1999. Results obtained on
plasma waves using a high frequency Langmuir probe
revealed for the first time, an experimental evidence
for the presence of sub-meter scale size plasma wave
over low latitude E-region. The peak amplitude of the
plasma wave occurs at 105 km with a magnitude of
~4% of ambient electron density. The ambient
plasma conditions during these measurements imply
that the causative mechanism for the generation of
this plasma wave is different from well known gradi-
ent drift waves.

LEONID meteor shower associated with comet Tempel-
Tuttle occurs every year during 17-18 November with a

*For correspondence. {e-mail: rsekar@prl.ernet.in)
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typical meteor zenith hourly rate (ZHR) of around five'.
However, Leonid meteor storm occurs once in about 33
years with intense ZHR of a few thousands®™ when the
above comet approaches inner solar system. In the litera-
ture®*, in situ measurements during an intense meteor
storm is not available from a low latitude region prior to
the present rocket measurements during Leonid storm
1999. Two RH-300 Mark-II rockets (F.1 and F.2) carry-
ing high frequency Langmuir probe sensor mounted on
booms perpendicular to spin axes of the rockets were
launched from Sriharikota (13.7°N, 80.2°E, dip lat.
6.0°N) on 18 and 20 November 1999 respectively at 7.25
and 7.03 IST (Indian Standard Time = UT + 5.30). The
launch of F.1 coincided with the peak activity of Leonid
meteor storm, while the launch of F.2 happens to be
when the activity reduced to one-third. The ambient elec-
tron densities (n.) and fluctuations (An.) in them which
represent the plasma waves were measured along the tra-
jectories of the rockets. Earlier studies’  on plasma
waves during normal days revealed only gradient drift
waves over a low latitude station like Sriharikota. How-
ever, over magnetic equator, other plasma waves known
as type I waves™®’ associated with equatorial electrojet
have also been observed. The above two types of plasma
waves have a cut-off scale size of a few meters™”.

Figure 1 depicts the telemetry raw data from a high
frequency (100 Hz to 3 kHz) channel representing the
fluctuations in the electron densities corresponding to
about 105 km altitude obtained on 18 November 1999.
The expanded portion of the diagram corresponding to
the time interval when high frequency fluctuations are
observed in Figure 1 a, is given in the bottom panel of the
diagram as Figure 1 5. During a time interval of 0.02 s,
forty peaks are seen in Figure 15 which correspond to
~2 kHz wave frequency in the rocket frame of reference.
Similar features were observed on 20 November 1999. It
can be noticed from Figure 1 a that these high frequency
fluctuations are found only on certain durations revealing
that these fluctuations are geophysical and anisotropic in
nature. Taking into consideration measured vertical velo-
city of the rocket (~ 1 km/s) at 105 km altitude, the obser-
ved 2 kHz plasma waves (in Figure 1) correspond to a
scale size of about 50 cm. Thus, an evidence for the pres-
ence of sub-meter scale size of the plasma waves is re-
ported here for the first time from a low latitude E-region
of the ionosphere.

Figure 2 depicts the altitude profiles of electron den-
sity along with the average values of the amplitudes of
the plasma waves observed on 18 November 1999. Con-
sidering the errors in the measurements, wave amplitudes
greater than ~05% have physical significance. The
plasma waves are observed to confine in the altitude re-
gion of 100 to 120 km with a maximum amplitude at an
altitude of 105 km. From Figure 2 it is clear that the
absence of plasma waves in a steep electron density gra-
dient region (90-94 km) and a presence of maximum
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