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Is diffusion-induced chaos robust?

Vikas Rai* and Girija Jayaraman'*

*Department of Applied Mathematics, Delhi College of Engineering,
Delhi 110 042, India

iCentre for Atmospheric Sciences, Indian Institute of Technology,
New Delhi 110 016, India

We examine the robustness of diffusion-induced chaos
in spatial predator—prey systems with a view to ascer-
tain likelihood of its occurrence in natural systems.
Our study of two models with spatial gradient in the
prey growth rate and random (diffusive) movements
of both species suggests that the chaotic behaviour
generated through this mechanism is robust and there-
fore may be observed in natural systems. Another use-
ful result that has emerged out of our simulation
studies is that migratory behaviour of predators sup-
presses chaos, but cannot eliminate it. We suggest that
chaos should be looked for in places where these neces-
sary ingredients, viz. spatial gradient, diffusive move-
ment of species and oscillatory predator—prey dynamics,
are present.

IN nonlinear dissipative dynamical systems, a peculiar type
of behaviour is observed when a crucial parameter cros-
ses a certain value. System trajectories, in this case, are
not attracted to a sink; instead, they meander aimlessly
on a bounded phase space. The system’s evolution is
such that two nearby points in the space diverge expo-
nentially. If one takes it to be the error in specifying the
initial conditions, then this exponential magnification
means that the system loses predictability after a certain
amount of time has elapsed. This dependence of a sys-
tem’s trajectory on initial conditions in deterministic
dynamical systems is known as chaos. Chaotic systems
do not possess reproducibility property and therefore, are
not amenable to any scientific verification.

An ecological model displaying chaotic dynamics at an
isolated point in a parameter space has no meaning.
Unless this chaotic behaviour is robust, there does not
exist a possibility that the same will be realized in an
experiment or it can be captured in a natural setting.
What is meant by robust chaos is that for every parameter
value there exists a range of other parameter(s), wherein
the chaotic behaviour is preserved. In addition to this, the
attractor’s basin should not have complicated boundary
structure. Only smooth boundaries are allowed.

Chaos was first observed by May' in models of popu-
lations with non-overlapping generations. Later, in 1976,
he established that simple mathematical models could
display complicated dynamical behaviour including chaos.
Since then, many investigators have attempted to study
this mode of the system’s dynamics in model terrestrial
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systemsz’é. All these studies indicated that field ecol-
ogists can easily capture chaos out in the field. Studies by
McCann and Yodzis’ and by Ruxton® critically examined
the findings of earlier investigators and made the follow-
ing key observations: (1) productive environment is a pre-
requisite for a system to support a dynamical behaviour
such as chaos, (2) any reduction in chaos caused by
immigration or refuge can be compensated by a sufficient
increase in the resource renewal rate and (3) highly
enriched systems are the most prospective candidates for
chaotic dynamics to exist®.

Unfortunately, attempts to observe chaos in natural popu-
lations have largely been a failure. In the early part of the
last decade, Sugihara et al.’ reported that the variability
in marine diatoms in Scripps Pier, San Diego, as recorded
by Allen, can be partly described by deterministic chaos.
Later on, Hanski et al.'® discovered chaotic dynamics in
rodent populations of Fennoscandia. In the light of the
criticism of such approaches by Morris'', and keeping in
view the noisy character of population systems, this can-
not be regarded as an unequivocal evidence of chaos in a
natural population. Recently, Costantino er al.'> esta-
blished the occurrence of chaotic dynamics in an insect
population, flour beetle tribolium in the laboratory. But,
the conditions in which the chaotic attractor was obser-
ved are far from reality. Absence of a spatial dimension
and biological interaction, and presence of cannibalism
(which acts as a potent feedback mechanism) make it
unrealistic. Therefore, it can be understood that no un-
ambiguous evidence of chaos exists till date. The investi-
gations by Upadhyay and Rai'>'* and Upadhyay e al.”’
into reasons why chaos had been rarely observed in natu-
ral populations concluded that natural terrestrial systems
are not suitable candidates for the exploration of chaotic
dynamics. This is paradoxical, since ecological systems
have all the necessary characteristics (nonlinearity, high-
dimensions, etc.) to be able to support chaotic dynamics.
Since almost all the other forms of scientific enquiry
have found application of ideas from nonlinear dynamics
and chaos, there is a natural curiosity and urge to explore
the possibility of aquatic systems evolving on chaotic
attractors. It is with this motivation that the present study
was undertaken.

We describe in the following, two model systems:
(a) model 1 by Pascual'®, and (b) model 2 incorporating
feeding by the specialist predator on the alternative prey.

Model I: The model based on the paper by Pascual'®

takes into account the diffusion along a spatial gradient
of both the species — predator and prey. It is analysed for
temporal chaos at a fixed point in space. The model, in
non-dimensional form, is given as follows:
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where the non-dimensionalization is given by

p=P/K, h=AHIK, t=RT

r,= Rx/ﬁ, m=MIR.

x=X/L,

P (X, T), H (X, T) are respectively, the prey and predator
populations at any point X and time 7; R, K, M and 1/4
denote the intrinsic growth rate of the predator and the
yield coefficient of prey to predator respectively. L is the
total length of the gradient, R is a characteristic value of
the prey growth rate and d is the diffusion coefficient
assumed to be same for both prey and predator. a, b are
non-dimensional constants parameterizing the saturating
functional response, environmental heterogeneity (R,) is
introduced by considering the non-dimensional prey rate
of increase r, as a linear function of x, say e + fx. Assum-
ing zero flux at the boundaries, the boundary conditions
are written as

a—p:a—hzo for all 7. 3
ox ox
Model 2: In situations when it is hard to find the most

preferred prey, specialist predators switch to other preys.
In such a situation, model 1 needs to be modified to include
switching behaviour of some individuals of predators by
subtracting a constant term from the specialist predator’s
mortality term. This new model is based on the rationale
that no predator is a specialist predator in the sense of
eq. (2), according to which / will decline exponentially,
when p is absent. Inclusion of a term to represent switch-
ing behaviour takes care of the fact that the prey feeds on
alternative prey when its most favourite prey is scarce.
The resulting equations are given by:
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where 4* is a constant. As before, eq. (3) provides the
boundary conditions. Such a modification was first intro-
duced by Blasius et al.'”. Equations (1)~(5) were solved
using Crank—Nicolson finite difference scheme. The resul-
ting algebraic equations involve a tridiagonal matrix and
hence the system could be solved easily using Thomas
algorithm.

The models contain various parameters, which corres-
pond to intrinsic attributes of the system. The two models
are solved to test the robustness of the chaotic behaviour
if it exists; and the discussions are carried out for the
two-dimensional parameter spaces, e.g. b and d, f and d.
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The motivation behind the analysis is the fact that any
single change in the physical conditions of the system
brings corresponding changes in, at least, two system
parameters.

It is well known that minimum number of degrees of
freedom required for chaos is three. This is the reason why
two-species systems do not display chaotic solutions.
Pascual'® examined the possibility if the spatial gradient,
affecting the growth rate of the prey species, can provide
the coupling mechanism for the oscillatory predator—prey
dynamics. Two coupled non-chaotic oscillators are known
to admit chaotic dynamics. He found that the diffusive
movements of the species create a system of coupled oscil-
lators that mutually force each other at incommensurate
frequencies. This results in chaos. The period of cycles of
these oscillators is determined by the parameter r,, which
is given by

re=2-14x,

and thus varies along the spatial gradient.

The parameter values for model 1 were taken from Pas-
cual'®. Apart from confirming all the results of Pascual,
our analysis extends them to a discussion corresponding
to two-dimensional parameter spaces. Model 2 introduces
switching behaviour explicitly through the parameter A*
whose value is fixed at 0.1.

A scalar time series was generated by solving the equa-
tions numerically with a given set of parametric values.
The dynamics was analysed with the help of Chaos Data
Analyser, a software tool from AIP. In order to diagnose
a model generated time-series data as chaotic, various tasks
were performed. No single test (e.g. phase space recon-
struction or Lyapunov exponent calculation) gave an un-
ambiguous result. Therefore, outcomes from various tasks
were combined to arrive at a conclusion. Keeping all
other parameters fixed, calculations were mostly done for
variations of the two parameters b and d. The chosen set
of parameter values is the one which yields stable limit
cycle solutions in the absence of diffusion. The two criti-
cal parameters b and d were varied in their biologically
plausible range. Figure 1 ¢ and 5 shows two time series
plots for x =0 and for x =0.85. Figure 1 a shows the
time series corresponding to regular cycles. Figure 1 5 dis-
plays a chaotic time history at the high end of the spatial
gradient.

As noted earlier, model 2 is a modified version of model
1. Hence comparing the two models should bring out the
effects of switching on population dynamics. Table 1 is
based on several runs carried out by varying the two para-
meters b and d in the range 2 <h<12; 10° <d <107
For all values in this range other than those presented in
Table 1, chaos found in model 1 was found suppressed in
model 2. It is surprising that switching has the ability to
contain chaos.

An investigation of the question of robustness is not
complete unless one ensures that a given dynamical
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Figure 1. Time-series plots for model 1 at @, x = 0 and, b, x = 0.85. Parameter values used to generate

these time histories are: a =5,b=2,e=2,f=—14, m=0.5.

Table 1. Comparison of models 1 and 2 for appearance of chaos
b d Remarks on chaos
5 107 Chaos preserved in models 1 and 2
6 107 Chaos absent in model 1, present in model 2
6 10°° Chaos absent in model 1, present in model 2
7 107 Chaos absent in model 1, present in model 2
7 10°° Chaos absent in model 1, present in model 2

behaviour is observed for almost all the sets of initial
conditions forming a sufficiently large area in the initial
condition space. Chaos was observed at 5 =2, 4 and 5 for
all the sets of initial conditions sampled from their range
0<p, h<1. The parametric values b=2 and b=5 are
the edges of the parameter region. No other competing
behaviour was found.

In this study, we have analysed two different model
aquatic ecosystems. Each one of them has a distinct char-
acteristic: model 1 corresponds to a specialist predator,
model 2 modifies model 1 by allowing feeding on the
alternative prey available to the specialist predator, as and
when the population density of its most favourite prey
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declines to a critical value. For example, in an aquatic
environment, the zooplanktons, which prey on the phyto-
plankton, can switch to alternative preys like their own
fellow populations, when the algae is in short-supply.

Our simulation experiments and subsequent analyses
reveal that chaotic behaviour displayed by model 1 is
robust. Model 2 is found to be largely non-chaotic, but it
also supports chaotic dynamics in a narrow strip of the /-
d parametric space. In any case, existence of robust chaos
has been found in a model ecosystem. Previous studies
have not focused their attention on the requirement that
any dynamical behaviour should exist in a considerably
large area of the two-parameter space in order to corre-
spond to any realistic situation.

From Figures 2 and 3 it is evident that low-to-moderate
values of the parameter b = k/c;, where k is the carrying
capacity for the prey and c, parametrizes the saturating
functional response of the predator favours existence of
chaotic dynamics when the diffusion coefficient is rela-
tively high. Our analysis also shows that chaos exists in a
range of the parameter f, for these values of diffusion
coefficients (Figure 3). This is what we mean by robust
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Figure 2. Points in the b—d parameter space where chaos was obser-

ved in model 1. The rest of the parameters are: a =5, e=2, f=—1.4,
m=10.5.
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Figure 3. Points in the f~d parameter space where chaos was obser-

ved for model 1. The other parameters were fixed at: a =5, b=35,
e=2,m=0.5.

chaos. If field studies are performed in real systems, one
is most likely to be able to observe chaos. Figure 4 gives
sets of initial conditions that were used to run the model
lath=2.

The requirement that an ecosystem should be highly
productive in order to be able to support chaotic dyna-
mics® is relaxed in the case of systems where diffusion is
active. We have observed existence of robust chaos in
model 1 for relatively low value of the intristic growth
parameter r. Our analysis of model 2 suggests that ability
of specialist predators to adjust to their environmental
conditions (food availability and capacity of the envi-
ronment to sustain a specific rate of growth) does not
favour chaotic evolution. Instead, it suppresses many of
the unstable periodic orbits embedded in a chaotic attra-
ctor and, thus, converts it into a stable limit cycle. To be
precise, we find that prey-switching in specialist preda-
tors does not allow populations to cycle, but in most of
the cases, forces the system to rest on a stable focus.

The formulation of the predator’s feeding on alterna-
tive prey used in model 2 essentially amounts to the pre-
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Figure 4. Points in p—/ initial condition space where chaos was

observed in model 1. The parameters were taken to be: a =5, b =2,
e=2f=-14,m=05d=10"

dator’s migration from one patch to the other. The patchy
nature of the environment is generated by the interaction
of diffusion and migration; diffusion representing random
movements of both predator and prey. Thus, model 2 de-
scribes population dynamics in the wake of patchings
generated by diffusive instability. This diffusive instabi-
lity is driven by migration of predators from one patch to
another. Although model 2 displays chaotic behaviour in
a thin strip of b—d parameter space, it can be observed in
nature, as the basin of attraction for these chaotic attrac-
tors is large enough.

Sherratt et al.'® have proposed a different mechanism
for the generation of chaos; invasion waves of predators
may have chaotic solutions in their wake in oscillatory
predator—prey systems driven unstable by diffusive move-
ments of both species. This mechanism does not require a
spatial gradient to couple to diffusion to create chaos.
The robustness of this mechanism is yet to be examined.
Nevertheless, their study makes an important contribution
by providing insight that the destabilization of predator—
prey dynamics by diffusion is not an artifact of reaction—
diffusion models; instead, it is a general property of
oscillatory predator—prey interactions. In our opinion,
this mechanism is more likely to be operational in terres-
trial ecosystems. This can be verified by designing and
conducting field studies.

In conclusion, we note that aquatic systems may be suit-
able places to look for chaos. There is every reason to
believe that carefully designed, long-term field studies
will enable ecologists to capture chaos in the wild. If it so
happens, then the Eulerian sampling techniques which
are currently in vogue in marine ecology, will prove un-
suitable and inadequate19. More data based on satellite
images will be required to obtain spatial averaging of
large marine populations.
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Erosion activity on Majuli — the largest
river island of the world
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Majuli, a river island within the two arms of the
mighty Brahmaputra river, is a site having extreme
historical and cultural importance, and warrants
immediate exposure to the scientific community. The
island faces an acute erosion problem as no perma-
nent anti-erosion measures based on proper geo-
hydrological models have been adopted so far. The
land area of the island, as evidenced from the IRS
satellite imagery of 1998, is 577.65 km’> compared to
1245 km® according to available historical records.
The available data indicate an erosion rate of 1.9 km?/
yr for the period of 1920-98. If the situation remains
unattended, the island will soon be engulfed by the
Brahmaputra river and will become extinct from the
world map.

MAJULL the largest river island of the world"* (26°45'N
to 27°15'N lat.; 93°45’E to 94°30’E long.), is covered by
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the Survey of India toposheet nos. 83 F/5, F/6, F/9, F/13,
1/4, 1/8 and J/1 (Figure 1). Majuli Island has a population’
of 134,395 and an area of 900 km®. It is now one of the
subdivisions of Jorhat District, Assam, India, with Kama-
labari as its subdivision headquarter. It includes 155 vil-
lages under three revenue circles (Salmora, Kamalabari and
Ahatguri). The famous cultural centres — Auniati, Kama-
labari, Garamur and Dakhinpat — have made significant
contributions to the Vaisnavite Movement of Assam™’.
Geomorphologically, the Majuli Island forms a part of
the flood plains of the Brahmaputra river. The Majuli
Island suffers from severe bank erosion on its southern
side due to the erosive action of Brahmaputra river, and
on its northern side due to the Subansiri river. The river
island is subjected to severe annual floods under the
influence of the SW monsoon. The erosion is mainly
attributed to extreme sediment charge®” and to the main
river traversing through a series of deep and narrow
throats, and formation of sand bar in the midst of
the river. Along the channel of the Brahmaputra river,
bank material is rarely homogeneous in composition and
uneven bank-slumping is a characteristic feature. Often,
highly saturated clayey silts liquefy and tend to flow
towards the channel. Consequently, the overlying less
saturated bank material tends to slump along well-
defined shear planes. Thus, there appear two prominent
types of slumping: (a) undercutting during flood stage
and (b) flowage of highly saturated sediments during the

Figure 1.

Location map of Majuli Island.
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