Comparative studies on drought-induced changes in peptidyl prolyl \textit{cis–trans} isomerase activity in drought-tolerant and susceptible cultivars of \textit{Sorghum bicolor}

Arun Dev Sharma and Prabhjeet Singh*
Department of Biotechnology, Guru Nanak Dev University, Amritsar 143 005, India

Drought stress-induced changes in peptidyl prolyl \textit{cis–trans} isomerase (PPIase) activity were studied in two sorghum (\textit{Sorghum bicolor (L.) Moench}) cultivars, viz. ICSV-272 and SPRU-94008B, which are categorized as drought-tolerant and susceptible respectively. Stress-induced changes in PPIase activity of different tissues were examined at various stages of development. Imposition of water stress resulted in a significant increase in leaf- and root-PPIase activity in the cultivar ICSV-272, whereas, in the drought-susceptible cultivar SPRU-94008B, the PPIase activity of the two tissues decreased appreciably in response to drought. ICSV-272 also showed substantially higher drought-induced increase in the grain PPIase activity. The water stress-induced increase in total PPIase activity in ICSV-272 was due to specific induction of PPIases. The PPIase activity in different tissues was due to presence of both cyclophilins (Cyps) and FK506-binding proteins (FKBPs). The effect of water stress on Cyp- and FKBP-associated PPIase activity was differential and tissue-dependent. The differential effect of drought stress on PPIase activity in the two cultivars was independent of water-potential, thus suggesting different regulatory pathways in the drought-tolerant and susceptible cultivars of sorghum.

Protein folding \textit{in vivo} is mediated by an array of proteins that act as molecular chaperones, foldases or both1,2. In folded proteins, the peptide bonds occur only in two confirmations, \textit{cis or trans}3. The peptide bonds not preceding proline are almost always \textit{trans} in folded proteins, but 5.7\% of all Xaa–Pro peptide bonds show \textit{cis} confirmation in proteins with known three-dimensional structure4. The slow isomerizations about proline imidic bonds are frequently the rate-determining events in folding. In a cell, folding should not be too slow and partially folded intermediates should not be present for an extended time in order to minimize the risk of their aggregation. Peptidyl prolyl \textit{cis–trans} isomerases (PPIases), also called rotamases or immunophilins, are the only enzymes evolved to stabilize a transition state that is separated from

*For correspondence. (e-mail: prabhjeet_s@yahoo.com)

CURRENT SCIENCE, VOL. 84, NO. 7, 10 APRIL 2003

911
and cyclophilins are present in multiple forms and the different PPIase genes are regulated differently in a temporal- and tissue-specific manner, these studies therefore do not throw light on the overall status of total cellular PPIase activity in response to different stimuli. Further, under stress conditions activity of many of the genes is regulated at post-transcriptional and post-translational levels, thus making it imperative that PPIase expression should be studied at the activity level. In view of these objectives, the present study investigated the effect of water stress on total PPIase activity in two sorghum cultivars which differed in their tolerance to drought.

Materials and methods

Plant material

Seeds of drought tolerant (ICSV-272) and susceptible (SPRU-94008B) cultivars of Sorghum bicolor (L.) Moench were procured from International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India. The drought-tolerant sorghum cv. ICSV-272 exhibits higher growth rate under drought and faster recovery after water stress compared to the susceptible cv. SPRU-94008B. Plants were raised in pots (one plant per pot) in the net house under natural conditions and tagged on the day of anthesis. Single water-stress treatment at different stages of development was imposed (5–6 days prior to sampling) by withholding water supply, while the control plants were watered daily. Leaf samples were collected at 30, 60, 70 and 80 days after sowing (DAS), while the developing grains were collected at 9, 15, 21 and 27 days post anthesis (DPA). Water-potential measurements (in five replicates), using Thermocouple Dew Point Microvoltmeter (Model HR 33T, Wescor Inc., USA) were taken between 9:00 and 10:30 am on the uppermost, fully-expanded leaf before flowering and on the first leaf below the flag leaf during grain filling. Due to rapid senescence, water-potential of the leaves could not be measured after 9 DPA (80 DAS). Freshly-harvested grains (in five replicates) for water-potential studies were taken from the middle portion of the panicles. Equilibration times for leaf- and grain-water-potential were 30 min and 5 h respectively. For biochemical analysis roots and leaves from stressed and control plants, harvested in triplicate at different stages of growth, were frozen in liquid nitrogen until further analysis. Panicles from three pots, representing one replicate, were harvested in triplicate at 9, 15, 21 and 27 DPA and frozen in liquid nitrogen till further analysis.

Extraction of proteins

Total soluble proteins from three replicates of leaves, roots and grains (20 grains from the middle of the panicles for each replicate) harvested at different stages of growth were extracted in ice-cold extraction buffer (5 ml g⁻¹ f wt) [5 mM Tris-HCl (pH 7.8), 12 mM phenyl methyl sulphonyl fluoride, 20 µm leupeptin, 10 µg/ml chymotrypsin, 50 µg/ml N-tosyl-L-phenyl alanine chloromethyl ketone, 20 µg/ml pepstatin-A, 0.015% Triton X-100] after homogenizing with pestle and mortar. The seeds at 9 and 15 DPA were separated into embryo and endosperm for determining the relative contribution of different tissues to the total seed PPIase activity. At later stages of grain development, it was not possible to separate these tissues. The extracts were centrifuged at 10,000 g for 15 min at 4°C. Since PPIase activity was not detectable in the crude extracts, the proteins were precipitated with two volumes of ethanol at 4°C, dissolved in HEPES buffer (50 mM, pH 8.0) and used for determining the PPIase activity. Protein was determined according to Lowry’s method.

Peptidyl prolyl cis–trans isomerase assay

The fine chemicals and reagents used in this study were purchased from Sigma Chemical Co, St. Louis, USA. Cyclosporin-A (Sandimmune) and FK506 were from Sandoz AG, Basel, Switzerland and Fuzisawa Pharmaceutical Co. Ltd, Osaka, Japan respectively. Peptidyl prolyl cis–trans isomerase activity was assayed in a coupled reaction with chymotrypsin, as described in Breiman et al. The assays were performed at 4°C for 360s under N₂ environment. The 1 ml assay mixture contained 40 µM N-succinyl-alaph-pro-phe-p-nitroanilide as test peptide, assay buffer [50 mM HEPES (pH 8.0), 150 mM NaCl, 0.05% Triton X-100] and 300 µg of the protein. The reaction was initiated by the addition of chymotrypsin (300 µg/ml) and the change in absorbance at 390 nm was monitored using a spectrophotometer (Perkin-Elmer Lambda Bio20) equipped with Peltier temperature control system. Cyclophilin- and FKBP-associated PPIase activities were determined by the extent of inhibition of reaction in the presence of CsA (50 µM) and FK506 (30 µM) respectively. The inhibitors were added to the assay mix 30 min before the start of the reaction and incubated at 4°C. For calculating the PPIase activity, the difference between the catalysed and uncatalysed first-order rate constants, derived from the kinetics of the absorbance change at 390 nm, was multiplied by the amount of the substrate in each reaction.

Results

Water-potential

Compared to 30 DAS, leaf water-potential in irrigated and stressed plants of both the cultivars was significantly lower at 80 DAS (Figure 1A). Water stress at all the
stages resulted in significant lowering of leaf water-potential in both the cultivars. The grain water-potential did not show any significant intercultivar differences under control and stress conditions (Figure 1 B). Imposition of water stress resulted in significant decrease in water-potential at all the stages with the effect of drought being more pronounced at 9 and 15 DPA.

Peptidyl prolyl cis–trans isomerase activity in leaves

Significant leaf PPIase activity under control conditions was observed only in SPRU-94008B which, following an exponential increase between 30 and 60 DAS, decreased to insignificant levels (Figure 2 A). The effect of water stress on leaf PPIase activity was contrasting in the two cultivars of sorghum. The total leaf PPIase activity of SPRU-94008B decreased dramatically at both 30 and 60 DAS in response to drought stress (Figure 2). On the contrary, the total PPIase activity in the leaves of drought-tolerant cultivar ICSV-272 increased by about 16-fold in response to water stress at 30 DAS (Figure 2 A) and was primarily due to specific induction of PPIases (Figure 2 B). Inhibition studies revealed that drought-induced PPIase activity in the ICSV-272 leaves at 30 DAS was due to similar induction of Cyp (55%) and FKBP (45%).

Peptidyl prolyl cis–trans isomerase activity in roots

Intercultivar differences with respect to root PPIase activity were observed under both control and stress conditions (Figure 3). Contrary to the irrigated roots of SPRU-94008B which, on both protein and dry weight basis, showed substantial PPIase activity at 60 DAS, the roots of the control plants of ICSV-272 depicted only marginal levels of total and specific PPIase activity at this stage (Figure 3). Imposition of water stress in ICSV-272 resulted in significant induction in the total root PPIase activity at 60 DAS (Figure 3 A), with the increase being mainly due to specific increase in PPIases (Figure 3 B). Inhibition studies with CsA and FK506 showed that the stress-induced increase at 60 DAS in PPIase activity of ICSV-272 roots was primarily due to increase in FKBP (70%), as Cyp-associated activity was only about 30%.

Although specific root PPIase activity of SPRU-94008B was unaffected by water stress at 60 DAS (Figure 3 B), the total PPIase activity (Figure 3 A) decreased significantly due to an overall decrease in total protein content (data not shown). Further, stress imposition at 60 DAS in the roots of cv. SPRU-94008B also resulted in change in relative expression of different PPIases. Under control conditions, almost whole of the PPIase activity of SPRU-94008B roots was due to Cyps (40%) and FKBP (60%), whereas under stress conditions, only about 45% of the PPIase activity was inhibited by the two inhibitors, with CsA and FK506 causing 15% and 30% inhibition respectively. These observations suggest that besides immunophilins, other PPIases also get induced in the roots of cv. SPRU-94008B under stress conditions.

Peptidyl prolyl cis–trans isomerase activity in developing grains

The total and specific PPIase activity of developing grains in both the cultivars after increasing exponentially between 9 and 15 DPA was undetectable at 21 DPA onwards (Figure 4 A). On protein as well as tissue basis, the
seed PPlase activity of the cv. ICSV-272 was higher than cv. SPRU-94008B, under both control and stress conditions. Drought stress-induced changes in the seed PPlase activity of the two cultivars varied with the developmental stage. Compared to 9 DPA in cv. SPRU-94008B, the significant increase in drought stress-induced total seed PPlase activity of cv. ICSV-272 was observed at 15 DPA (Figure 4 A).

To determine the relative contribution of different tissues to the seed PPlase activity, the PPlase activity of embryo and endosperm was determined separately. Total and specific-embryo PPlase activity in the two cultivars increased between 9 and 15 DPA under irrigated conditions (Figure 4 B). Drought-induced changes in embryo PPlase activity in both the cultivars were stage-dependent. Contrary to a dramatic decrease at 9 DPA, imposi-

![Figure 2](image2.png)

Figure 2. Total PPlase activity (A) and specific PPlase activity (B) in leaves of sorghum cultivars ICSV-272 (squares) and SPRU-94008B (triangles) under irrigated (——) and drought stress conditions (-----). Values represent mean of three replicates ± SE. Values shown by common letters are significantly different with respect to irrigated control at \(P \leq 0.005 \) c, \(P \leq 0.001 \) d.

![Figure 3](image3.png)

Figure 3. Total PPlase activity (A) and specific PPlase activity (B) in roots of sorghum cultivars ICSV-272 (squares) and SPRU-94008B (triangles) under irrigated (——) and drought stress conditions (-----). Values represent mean of three replicates ± SE. Values shown by common letters are significantly different with respect to irrigated control at \(P \leq 0.05 \) b, \(P \leq 0.001 \) d.
tion of water stress at 15 DPA resulted in substantial increase in embryo PPlase activity in cv. ICSV-272. The reverse was observed for the embryos of SPRU-94008B. The drought-induced decrease at 9 DPA in PPlase activity of ICSV-272 embryos was due to relatively greater inhibition of cyclophilins, since as compared to 45% in control, the CsA-inhibitable activity under stress conditions decreased to 20% (Table 1).

Stress-induced increase in embryo PPlase activity at 15 DPA in cv. ICSV-272 was not accompanied by any significant change in the relative contribution of Cyp s and FKBP s, thus implying that both responded equally to drought stress (Table 1). In SPRU-94008B, the water stress-induced increase in the embryo PPlase activity at 9 DPA (Figure 4 B) was mainly due to Cyp s, since CsA-inhibitable activity increased from 22% under irrigated

Figure 4. Total and specific PPlase activity in (A) developing grains of sorghum cultivars ICSV-272 (squares) and SPRU-94008B (triangles) under irrigated (———) and drought-stress conditions (----). B and C, PPlase activity in embryos and endosperms of ICSV-272 (control; C stress) and SPRU-94008B (control; d stress) respectively. Values represent mean of three replicates ± SE. Values shown by common letters are significantly different with respect to irrigated control at P ≤ 0.05 b, P ≤ 0.005 c, P ≤ 0.001 d.
conditions to 40% in the stressed plants, whereas the change in FK506-inhibitable activity was marginal at this stage (Table 1). These results demonstrate that in the 9-DPA sorghum embryos, Cyps are more responsive to stress than FKBP5s, and their expression in the two cultivars is regulated differently by drought stress. Drought stress caused a significant decrease in total and specific PPlase activity in 15 DPA embryos of SPRU-94008B (Figure 4 B). Under irrigated conditions, most of the embryo activity at 15 DPA in SPRU-94008B was due to FKBP5 (94%), which in response to stress conditions was reduced to 36%, while contribution of Cyp increased from 4% under control to 64% in stressed plants (Table 1).

The total and specific PPlase activity of endosperms was higher at 15 DPA than at 9 DPA in both the cultivars (Figure 4 C). Stress-induced increase in endosperm PPlase activity of cv. SPRU-94008B was significant at both the stages, whereas in cv. ICSV-272, it was significant only at 9 DPA (Figure 4 C). Inhibition of endosperm PPlase activity by FK506 and CsA was almost total at both the stages in irrigated and stressed plants of the two cultivars. Drought stress resulted in significant enhancement in total and specific endosperm PPlase activity at 9 DPA in both the cultivars, which was due to relatively greater increase in FKBP5s. This was evident, since FK506-inhibitable endosperm PPlase activity at 9 DPA in ICSV-272 and SPRU-94008B increased from 15 to 45% and from 18 to 52% respectively (Table 1). The Cyp-associated PPlase activity in the endosperm of both the cultivars registered a marginal decline in response to drought stress (Table 1). Relative contribution of Cyp and FKBP5s to the total endosperm PPlase activity at 15 DPA was more or less unaffected by stress in both the cultivars.

Discussion

Imposition of stress to plants results in change in gene expression. Many of the proteins which are induced by stress have chaperonic and/or foldase activity which is required for correct folding of the newly synthesized proteins. One such class of proteins comprises PPlases which catalyse the slow rate-limiting conversion of prolyl peptide bond from cis to trans, which is a rate-limiting step in protein folding. The PPlases are encoded by many different genes. Effect of different abiotic stresses on the expression of many of these genes has been studied, but information on stress-induced changes in the total PPlase activity under field/net-house conditions is lacking. Therefore, to examine the role of PPlases in stress tolerance, we focused on drought stress and studied the regulation of PPlases in response to water-stress conditions in the two cultivars of sorghum differing in their tolerance to drought. In the present study, the total PPlase activity represents the ethanol-precipitable activity. The cis-trans conversion of the peptidyl-prolyl bonds observed in the protein extracts of different tissues of sorghum was due to the presence of PPlases, since first-order rate constant increased with the amount of total proteins in the assay mix and heat treatment for 15 min at 60°C resulted in complete loss of this activity (data not shown).

The PPlase activity in different tissues of sorghum was regulated developmentally and was cultivar-dependent. The tissue- and stage-dependent differential PPlase activity observed in the present study is consistent with the spatial and temporal regulation of different FKBP and Cyp genes reported earlier. Maximum PPlase activity in both the cultivars was observed in the seeds at 15 DPA (Figure 4 A), with both embryo and endosperm contribu-

Table 1. Drought-induced changes in cyclosporin-A and FK506-inhibitable peptidyl prolyl cis-trans isomerase activity in embryos and endosperms of sorghum cultivars, ICSV-272 and SPRU-94008B, at 9 and 15 days post anthesis (DPA). Values represent mean of three replicates ± SE. Values shown by common letters are significantly different with respect to irrigated control at P ≤ 0.001 d.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Cultivar</th>
<th>Treatment</th>
<th>9 DPA Inhibition (%)</th>
<th>15 DPA Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CsA</td>
<td>FK506</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embryo</td>
<td>ICSV-272</td>
<td>C</td>
<td>45 ± 3.0</td>
<td>62 ± 5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>20 ± 1.2</td>
<td>68 ± 7.0</td>
</tr>
<tr>
<td></td>
<td>SPRU-94008B</td>
<td>C</td>
<td>22 ± 2.7</td>
<td>66 ± 8.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>40 ± 4.3</td>
<td>54 ± 6.0</td>
</tr>
<tr>
<td>Endosperm</td>
<td>ICSV-272</td>
<td>C</td>
<td>76 ± 7.8</td>
<td>15 ± 1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>55 ± 4.3</td>
<td>45 ± 3.7</td>
</tr>
<tr>
<td></td>
<td>SPRU-94008B</td>
<td>C</td>
<td>72 ± 7.1</td>
<td>18 ± 2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S</td>
<td>52 ± 4.5</td>
<td>52 ± 5.6</td>
</tr>
</tbody>
</table>

C, Control; S, Stress.
Drought-induced changes in expression of several genes have been associated with a decrease in tissue water-potential. However, in the present study, in spite of the water stress-induced decrease in leaf- and grain water-potential being similar in the two cultivars, the drought-induced increase in PPlase activity was observed only in the tissues of drought-tolerant cultivar ICSV-272. These observations suggest that the regulatory pathways which control the PPlase activity may be different in the drought-tolerant and susceptible cultivars of sorghum. Multiple signal transduction pathways between perception and drought-stress signal are involved in stress-induced gene expression due to which the stress response observed after exposure of plants to drought stress is complex. Some genes are rapidly induced within 10 min of stress while others are slowly induced after accumulation of endogenous ABA. It is likely that the stage- and cultivar-dependent increase in PPlase activity under drought stress conditions may be due to elevated levels of endogenous ABA, since induction of different immunophilin genes by ABA has been reported earlier. Further, studies on stress-induced changes in the endogenous ABA and PPlase induction are required to elucidate the mechanism of hormonal regulation.

In view of their stress-inducibility, different Cyp and FKBP genes have been speculated to play a role in stress adaptation of plants. However, a direct relationship between stress tolerance and expression of total PPlase activity has not been reported as yet. Our study demonstrates that, compared to the drought-susceptible cultivar, the stress-induced expression of total PPlase activity in different tissues of sorghum is dramatically higher in the cultivar which is tolerant to drought. The water stress-induced enhancement in the PPlase levels in different tissues of the cultivar ICSV-272 may be helping the other stress-induced proteins to maturation by virtue of their chaperonic and PPlase activity. It is also likely that enhanced levels of PPlase activity under stress conditions may be regulating the expression of other genes imparting stress tolerance since they are also implicated in signal transduction. These results suggest that it will be worthwhile to carry out such investigations with many drought-tolerant and drought-sensitive varieties to determine the potential of the total ethanol-precipitable PPlase activity as a useful marker for breeding stress-tolerant crops.

RESEARCH ARTICLES

ACKNOWLEDGEMENTS. Thanks are due to International Crops Research Institute for the Semi-Arid Tropics, Patancheru, for providing seeds of sorghum cultivars. We are grateful to late Dr S. S. Bhullar for the gift of FK506. This research was supported by the Department of Biotechnology, Government of India, New Delhi.

Received 26 October 2002; revised accepted 25 January 2003