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The classical behaviour of a quantum ensemble is
expected to be achievable only by a limiting proce-
dure. In this communication we discuss two remark-
able examples in which position and momentum

probability density functions wusing an arbitrary
Gaussian ensemble (described by a non-coherent
Gaussian wave packet) develop identically both in

classical and quantum mechanics. The first case is
propagation in free space and the second in a har-
monic oscillator potential. In both cases quantum
potential and quantum force (defined in Bohm’s the-
ory) are non-zero. This may be stated to be the out-
come of the present investigation.

ATFTER his classic papers on wave mechanics
Schrédingerl, in 1926, showed that by suitably superpos-
ing the energy eigenfunctions of a harmonic oscillator,
one can generate a Gaussian density function whose cen-
tre of mass oscillates like a classical particle and the
shape of the density curve remains unaltered during
motion. If we use the ensemble picture of a W function,
then it is implied that position and momentum density
functions p(x, f) and P(p, t) will develop identically in the
two mechanics. This is the well-known coherent state of
a harmonic oscillator. In 1982, Roy and Singh2 also
found an identical behaviour for coherent states. There
seems to be an exact parallelism between classical and
quantum motion. This appears surprising because the two
formalisms are so different. Though the exact parallelism
between classical and quantum mechanics has been es-
tablished for a coherent wave packet, no study, to the
best of our knowledge, has been made based on a non-
coherent wave packet, which is much more general.

The purpose of the present investigation is to study the
relationship between classical and quantum mechanics
using a non-coherent Gaussian wave packet (unlike a
coherent wave packet, here shape alters with time) in the
ensemble formalism. Here we show that arbitrary Gaus-
sian density functions (non-coherent wave packet) also
show similar parallelism when propagating in free space
or in a harmonic oscillator potential, though quantum
potential and quantum force, defined in Bohm’s theory3,
are non-zero in both the cases. Apparently, there seems to
be no demand for this identical behaviour and the reason
for such parallelism is not known at present. The two
examples studied here are unique because the demonstra-
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tion of the above parallelism between the two mechanics
does not require any approximation.

As in the previous study on Generalized Ehrenfest
Theorem (GET)', we interpret a Yrfunction to be describ-
ing the properties of an ensemble of identically prepared
particles, so that the observable quantities (distribution
functions and expectation values) can be interpreted for a
classical ensemble without difficulty. We believe that in
discussing the problem of classical — quantum relation-
ship, the ensemble interpretation alone offers a plausible
framework.

First, we discuss the propagation of a Gaussian ensem-
ble in free space according to quantum mechanics (QM)
and then according to classical mechanics (CM).

For quantum propagation we take the initial wave
function to have the form
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whose Fourier transform is given by
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and at t=0, it goes over to Yx, 0), the initial state. From
this \x, ) we calculate the following quantum density
functions:
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To calculate classical propagation we need an expression
for the initial phase space of the ensemble. We take the
well-known Wigner’s phase space density function’
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which is obtained by using Wx, 0) in the Wigner’s func-
tion® defined by
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From this phase space density function we calculate posi-
tion probability density at time ¢, pic(x, #), in the follow-
ing way:

p(x, p,t)y=p(x, p’, 0),

where x’, p” are functions of x, p and ¢,
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For momentum density we write
Pac(p,1)= | Pz, p,1)dx = p(p, 0). (10)
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We note that the quantum and classical results agree ex-
actly. The spreading of the density functions particularly
shows exact correspondence.

From the expression for y(x, f) given in eq. (3), we can
calculate the quantum potential Q which is given by
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To determine , we have written VYAx,?) as Yx, )=
R(x, NexpliS(x, t)/h], where R(x,f) and S(x,r) are real’.
Quantum force is defined by —a—g and in this case both
QO and —%—g are non-zero. Thus we see that the existence
of quantum potential and quantum force does not neces-
sarily indicate non-classical behaviour.

Now let us consider quantum propagation in a har-
monic oscillator potential.

We start with the same initial state of the ensemble as
in the previous example. The propagation of a Gaussian
wave function in a harmonic oscillator potential has been
discussed by Tsuru®. From his results we get the wave
function Wx,7) (eq. (3.26) therein) which satisfies the
Schrédinger equation:
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The Fourier transform of y(x, ) is given by
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From these results we get for the position and momentum
densities of the quantum ensemble
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For the classical ensemble, the solution of Liouville’s
equation is given by

p(x, p,t)y=p(x, p’, 0),

where x’, p” are functions of x, p and :
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results are given below (see Appendix).
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Gi(t) = (maoosinay)? + (o, cosay)?,

x; and o are as defined earlier. As in the previous case
we find the quantum and classical propagations are iden-
tical. It may be noted that for the special case 4ot =1,
o(t) and ©,(f) become constant and the ensembles propa-
gate without any spread in the width. This is the so-called
coherent state first discussed by Schrédingerl.

The examples we have discussed show that coherent
states are not the only states which show behaviour simi-
lar to those of a classical ensemble. The state for the
harmonic oscillator that we have discussed, is more gen-
eral than the coherent state. Here the width of the packet
oscillates as it propagates. Ensembles which behave simi-
larly in both classical and quantum mechanics are always
of interest in connection with the problem of classical
limit of quantum mechanics. Though classical and quan-
tum mechanics use widely different conceptual struc-
tures, still they have some deep-rooted similarity which
is manifested in the examples studied in this communica-
tion. Position and momentum probability density func-
tions develop identically in both the mechanics.
Ultimately this result may help in determining the true
relationship between the two mechanics and may be help-
ful in developing a proper theory of the classical limit of
quantum mechanics. This is the importance of the present
study.

In the present case the freely propagating Gaussian
packet generates an interesting problem of interpretation
of quantum mechanics, as well as an interesting applica-
tion in physical sciences. By placing a particle detector at
a distance larger compared to the width of the packet, we
can measure the mean arrival times of the particles. For
the classical ensemble we can calculate this quantity
from the equation of particle tracks. But in the standard
interpretation of quantum mechanics, the concept of par-
ticle motion is absent and the mean arrival time cannot be
computed. However, using Bohm’s causal interpretation7
of quantum mechanics, the mean arrival time can be cal-
culated and the condition under which these results agree
with the classical values can be studied. Investigation of
this intriguing problem is in progress.

Appendix

Here the phase space density function is given by
P, p, 1) = p(x’, p’, 0),

where x’, p” are functions of x, p and r:
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Position probability density at time ¢ is given by:
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To calculate pPy(p,?), we utilize the symmetry of
p(x’,p’, 0) given by eq. (6) (see text). To make the sym-
metry explicit, we redefine the quantities involved as
follows:
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In the new notation, we can write (see text, eq. (6)),
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The right hand side of eq. (A3) is symmetric for the
interchange between suffixes 1 and 2. pyc(xy,?), in the
new notation, may be written as
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Substituting the above values of x,, xop and (522 in (eq.
(A4)), we get the (eq. (17)) (see text) for prc(p, f), where
o,(t) involved in pPre(p, ) and o are connected by the
following relation:

szv(t) = m2(x)2(522 =m’w'c’sin’ oy +(5§ cos” a.
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