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Closed-form analysis of thin radially polarized
piezoelectric ceramic cylindrical shells with loss
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Closed-form solutions to the equations of motion of
radially polarized, piezoelectric, thin cylindrical shells
derived using Kirchhoff’s hypothesis are presented.
The axial and radial components of displacement are
expressed as sums of finite number of weighted expo-
nential terms. Internal losses are represented by
complex piezoelectric coefficients. The weights are
determined using boundary conditions at the ends of
the cylinder of finite length. The effect of the dimen-
sions of the cylinder and the piezoelectric coefficients
on the input electrical admittance is numerically
investigated. The real and imaginary parts of all four
piezoelectric coefficients used in the model have
significant effect on the admittance. The investigation
indicates that the inverse problem can be solved, i.e.
the complex piezoelectric coefficients can be deter-
mined using the measured admittance.

PIEZOELECTRIC, ceramic cylindrical shells are often used
in underwater sound navigation and ranging (sonar)
transducers'?. Axially polarized shells are used in Ton-
pilz (a German word meaning singing mushroom)’ pro-
jectors and radially polarized shells are used in
hydrophones. Projectors and hydrophones are underwater
analogues of loud speakers and microphones respec-
tively. Models of piezoelectric shells are necessary not
only to model transducers, but also to determine the
material properties of the shells. In this article a closed-
form solution is presented for the equations of motion
and boundary conditions® of thin, electrically excited,
radially polarized, piezoelectric cylindrical shells. The
effect of the dimensions of the shell and the piezoelectric
coefficients on the input electrical admittance is investi-
gated to see whether the model can be used for charac-
terization.

Material properties of piezoelectric shells have signifi-
cant variation, even when they are made in one batch. This
causes a variation in the characteristics of transducers.
Variations in the sensitivities of the hydrophones in a so-
nar array affect the accuracy of estimates of the direction
of arrival of signals. It is, therefore, necessary to identify
and use only those shells whose properties do not vary
significantly from the mean properties of all the shells.
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Material properties are determined as follows: First, a
model is used to obtain theoretical expressions for
quantities that can be measured easily. These expressions
will be functions of dimensions and material properties.
Quantities that can be measured easily in the case of
piezoelectric shells are, for example, the frequencies at
which resonances and anti-resonances occur when the
shell is electrically excited. Next, those quantities for
which theoretical expressions were derived, and the
dimensions, are measured and substituted in the theoreti-
cal expressions. Finally, the resulting equations are
solved to find the material properties.

The equations to be solved are often transcendental
and, furthermore, have to be solved simultaneously. The
accuracy with which material properties can be deter-
mined therefore depends on measurement errors, the
assumptions used to derive the theoretical model and
errors in solving the equations. It is much more difficult
to completely characterize piezoelectric ceramics than
isotropic elastic material, because ten coefficients are to
be determined in the former and only two in the latter.

In an earlier effort, a membrane model* of radially
polarized cylindrical shells was used to determine’ the
real parts of four out of the ten coefficients. Later, a thin-
shell model that includes the effect of bending stress and,
therefore, better than the membrane model, was devel-
oped’; but an eigenfunction method was used to solve the
governing equations and boundary conditions. The model
can, in principle, be used to find the real parts of four
coefficients. However, imaginary parts of the coefficients
represent losses in the cylinder and cannot be determined
by using the eigenfunction method.

The closed-form solution presented here has two adva-
ntages. First, axial and radial displacements, input elec-
trical admittance and other functions are expressed as the
sum of a finite number of terms and there is, therefore,
no truncation error associated with the evaluation of
these functions. Second, it is not based on eigenfunctions
or free modes of vibration that do not exist when internal
losses are present. Here, losses are represented by com-
plex material properties and the response of the shell is
finite even at resonance. In the lossless case, the response
is infinite at resonance. Numerical results are also pre-
sented. First, it is shown that the complex admittance of a
shell, with loss, obtained using the closed-form solution
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is in good agreement with that obtained using 3D equa-
tions and ATILA® — a finite element program. This indi-
cates that the assumptions made to derive the equations
of motion are reasonable for thin shells. Next, the depen-
dence of the input electrical admittance on the dimen-
sions and material properties of the shell is investigated.
The results indicate that it is possible to use the thin-shell
model and the solution presented here to determine the
complex material properties.

Theory

Consider a radially polarized, piezoelectric, ceramic cy-
lindrical shell shown in Figure 1. The length of the shell
is L, the mean radius is @, and the wall thickness is /. The
inner and outer curved surfaces are completely elec-
troded. The response of the cylinder to an applied voltage
V is of interest. Specifically, the dependence of the com-
plex input electrical admittance on the dimensions and
complex material properties of the cylinder is of interest.

The strain—displacement relations of a thin, piezoelec-
tric cylindrical shell are approximately expressed, by
making use of Kirchhoff’s hypothesis, in cylindrical
coordinates as

Se(ryz,@)=W(r,z,w)/(a+x)=W(a, z, )/ a, (1)
and

S,(r, z, @) =0U(a, z, ®)/ 92— x0°W (a, z, ®)/ 3z*, (2)
where U and W are the radial and axial displacement res-
pectively, x = r—a, Sgand S, are the normal strain in the 6

and z directions respectively, and @ denotes angular fre-
quency. The term containing x in eq. (2) is used to

Figure 1. A thin, radially polarized, piezoelectric, ceramic shell of
length L, average radius a, and wall thickness 4. The inner and outer
curved surfaces are completely electroded.
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account for bending strain. It is neglected when using the
membrane approximation.

Because the shell is thin, and it has been assumed that
Kirchhoff’s hypothesis is valid, all stresses that are zero
on the curved surfaces are assumed to be zero every-
where in the cylinder. Therefore, the piezoelectric equa-
tions of state are expressed’ as

T,(r,z,0)=— LS, (r, z, 0) + 0S4 (r, 2, )
spd-o
_d31(1+6)Er (l", z, 0))], (3)
Ty(r,z,0)=— 5-[Se (r, z, @)+ 05, (7, z, ®)
siil-o
_d31(1+6)Er (l", z, 0))], (4)
and

Dr(l’, z, 0))=d31T9 (l’, z, 0))+d31TZ(l’, z, 0))

+£3T3Er (r, z, ®), (5)
where

c =—le2 /lel, (6)

Ty and T, are the normal stresses in the 8 and z directions
respectively, and D, and E, are the electric displacement
and electric field respectively in the radial direction. The
clectroclastic coefficients sy}, 513, d3, and &5; have their
usual definitions.

The electric displacement, D,, must satisfy the electro-
static condition

! i[rDr (r,z,0)]=0. @)
¥ or

It is seen that
Dr(r’ Z,C()):Do(a,Z,O))/a, (8)

is an approximate solution.
The electric field is assumed to vary linearly between
the electrodes and is approximately expressed is

E.(r,z, @) =V(®)/ h+xE(z, 0)/ h, 9)

where V() is the applied voltage, and E(z, w) has the
dimensions of electric field and is to be determined.
It is seen that

D.(r, z,0) = L{EU(& 2.0+ W(a, 2, w)}
a

sii(l—o) Loz
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T~ Az2
+£33(1 o —2k3;) V(w)’ (10)
l-o h

when

k3, 0’
dy (1- 0 —2k3,) 0z*

E(Z, 0)): W(a’ z, 0)), (11)

i.e. electric displacement is independent of radial coordi-
nate and has the form shown in eq. (8), and the electro-
static condition is satisfied when £ has the form shown in
eq. (11).

Hamilton’s principle can be used to obtain the equa-
tions of motion and boundary conditions. The equations

of motion are®
U(a,z,0) , [Ula, z, ») 0
m{ }_ phe { } {CV(w)}’ 42

W(a, z, ®) W(a,z, ®)
where
—-a* o’ oa
h 32 ars
=29 %Z %=, Las)
@Sl ca— 1+B*(1+@)a* —
> B (1+9) 5
hz
= 14
B o (14)
2
_ (1+0)ks; ’ (15)
1-0—2k;;
dz
ks 3L (16)
31 Ll
and
:7;131 . (17)
The boundary conditions for free—free shells are’
d/dz  ola —dy(l+0)/h|[U(a, z,m) 0
0 9%/9z? 0 Wa,z @)}=40
0 9/’ 0 V(o) 0
z=0,L. (18)

Equation (18) indicates that the axial force, shear force
and bending moment are zero at the ends of the shell.
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The solution to the equations of motion (eqs (12)—(17))
is expressed as

6
Az
{U(a, z, a))}:V(w) %Ase
W((Z, z, 0)) Z Az ’
Ayt 4K

s=1

(19)

where the frequency-dependent values of A, are the solu-
tions to

292 2
—aA; —Q —oal
° 2 a4 2= 0 (20)
oal I+B8°A+@)a" A, —Q
212 . 2
S:_(a A +Q ):_ Gals4 . . 1)
oal 1+ B2(1+@)a*Al —Q
Q* =0’d*p s (1-c%), (22)
and
g = (1+0) 23)

h1-Q%)

Equation (23) is obtained by substituting eq (19) in the
second term in eq. (12) and equating the z-independent
terms.

The weights, 4;, are determined by solving the equa-
tions obtained by substituting the expression for the dis-
placements in egs (19)-(23) in the six boundary
conditions in eq. (18). Free—free shells are of interest for
characterization purposes because the boundary condi-
tions are easily achieved in practice. However, the
weights are determined for other boundary conditions by
using the same method.

Table 1. Material properties of piezoelectric ceramic
Material property Value

p (kg/m*) 7750

sp (m*/N) (16.4 —j0.3)107"*
sf, (m*/N) (-5.74 +j0.1)107"*
st (m*/N) (-7.22 +0.15)107"*
sk (m*/N) (18.8 —j0.3)107"
sk, (m*/N) (47.5 —j1)107"*

ds; (C/N) (=171 +73)107"*
ds3 (C/N) (374 —j7y107"*

dys (C/N) (584 —j10)107"2
BNER 1730 (1 —j0.02)

el /e, 1700 (1 —j0.02)
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Input electrical (@) conductance and (b) susceptance of a shell with L =10 mm, a = 10 mm

and 2 =1 mm in the neighbourhood of the first upper branch resonance frequency. Material properties

are shown in Table 1. ———, Closed-form; e, ATILA.

Other functions of interest, such as strain and stress,
are now obtained by substituting the values of 4, in the
appropriate equations. The total charge

L
O(®)=27a j D, (r, z, w)dz, (24)
0

on the surface of the electrodes is determined by substi-
tuting egs (1) and (2) in eqgs (3)—(6). It is expressed as

L
Q(w)zzmj dy; {8U(a,z,w)+W(a,z,w)

L [s1(1-0) oz a
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(25)

h

~ 2d31V(w)}
h

+eg V() }dz.

After substituting eqs (19)—(23) in eq. (25), the input
electrical admittance,
Y(0) = joQ(w)/V (0), (26)

is expressed as

enl(, 2k

Y(w)=G(w)+ jB(w)= jolra
h l1-o
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where G(w) and B(w) are the input electrical conductance
and susceptance respectively.

Numerical results

Numerical results are now presented for thin, radially
polarized, cylindrical shells. Unless otherwise mentioned,
the material properties used in the computation are those
shown in Table 1, and the dimensions of the shell are
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L =100 mm, @ = 10 mm and # = 1 mm. The real parts of
the material properties are those of PZT5A (ref. 2) and
the imaginary parts satisfy the conditions derived by Hol-
land’. Tt is noted that only the coefficients sj;, s, ds,
and &, are used in the present model. However, all the
ten coefficients are used in ATILA®. In ATILA, exact 3D
governing equations are solved using axisymmetric,
isoparametric, quadratic, finite elements.

The complex input electrical admittance of a shell, in
the neighbourhood of the first resonance in the lower and
upper branches, is shown in Figures 2 and 3 respectively.
A solid line and dots are used to show the values com-
puted using the closed-form solution and ATILA respec-
tively. At the first resonance of both the branches, the
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Input electrical (@) conductance and (b) susceptance of a shell in the neighbourhood of the

first upper branch resonance frequency. Other details as in Figure 6.

radial displacement has no nodal point and the axial dis-
placement has one nodal point. Therefore, the displace-
ment distribution is similar at both resonances. However,
in the lower branch, the maximum radial displacement is
greater than the maximum axial displacement, and, in the
upper branch, it is vice versa.

Even though several assumptions have been made to
derive the equations of motion in the thin-shell model, it
is seen from Figures 2 and 3 that the agreement is quite
good. The resonance frequencies fs1 in the lower branch
and f" in the upper branch, at which the input electrical
conductance, G, is locally maximum; the locally maxi-
mum values of G; the frequencies at which the input

986

electrical susceptance, B, is locally maximum; the locally
maximum values of B; the frequencies at which B is
locally minimum; the locally minimum value of B; and
the anti-resonance frequencies fp1 and fpu at which B
becomes zero (about 47 kHz in Figure 2 5 and 172 kHz in
Figure 3 b), are all in good agreement. This is of interest
because measured values of these frequencies can be
used for characterization’.

The effect of changes in the dimensions of the shell is
shown in Figures 4 and 5. The complex admittances of
shells with the following dimensions are shown:
L=10mm, ¢=10mm and 2=1mm; L=11 mm,
a=10mm and A=1mm; L=10mm, ¢ =11 mm and
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first upper branch resonance frequency. Other details as in Figure 8.

h=1mm;and L =10 mm, ¢ =10 mmand ~z= 1.1 mm. It
can be seen from Figures 4 and 5 that the mean radius, a,
has a strong effect on the lower branch resonance fre-
quency, fsl, and the length, L, has a strong effect on the
upper branch resonance frequency, f.'. The thickness, 4,
does not have a strong effect on either resonance fre-
quency.

The effect of increasing the real part of S1E1 by 2% and
the real parts of the s},, dy,, and &;; by 10%, one at a
time, is shown in Figures 6 and 7 in the neighbourhoods
of f! and f" respectively. The values shown in Figures
2 and 3 for a cylinder of L =10 mm, ¢ =10 mm and
h =1 mm are also shown in Figures 6 and 7 respectively
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to make the comparison easier. It can be seen from Fig-
ures 6 and 7 that the real part of s;; has a strong effect
on fs1 and f". The real part of s, has a strong effect on
S and a lesser effect on fsl. The real part of d5; does
not have a strong effect on the resonance frequencies, but
only on the values of G at these frequencies. It also has a
strong effect on the anti-resonance frequencies, fp1 and
fp“, in the lower and upper branches respectively. The
real part of E3T3 does not have a strong effect on the ad-
mittance in the frequency regions shown in Figures 6 and
7, but has a strong effect on the input electrical suscep-
tance B, at frequencies that are much lesser than all reso-
nance frequencies.
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The effect of increasing the imaginary parts of lel, lez,
d3; and £3T3, one at a time, by 50%, is shown in Figures 8
and 9. It is verified that the conditions in Holland’ are
satisfied after increasing the coefficients. It is seen from
Figure 8 that only the imaginary part of S1E1 has a strong
effect on G and B in the neighbourhood of f. Changes
in the imaginary parts of the other coefficients have
lesser effect. It is seen from Figure 9 that only the imagi-
nary parts of s;; and s{; have a strong effect on G and B
in the neighbourhood of £.". The imaginary part of ds;
has a weak effect on the locally maximum value of B.
The imaginary part of £3T3 has an effect on the values of
G at low frequencies, but this is not shown in the figures.
The effect of the imaginary parts of the coefficients on
the input electrical admittance is also investigated using
ATILA, and the conclusions are the same.

Conclusions

A closed-form solution to the equations governing elec-
trically excited, thin, radially polarized, cylindrical shells
with loss is presented. Expressions for all quantities of
interest are sums of a finite number of terms, and there is
no truncation error associated with evaluation of infinite
series. For thin shells, the numerical results are in good
agreement with those obtained using ATILA.

The effect of dimensions and piezoelectric coefficients
on the input electrical admittance in the neighbourhood
of resonance frequencies is numerically investigated. The
study shows that the real and imaginary parts of lel, lez,
d;, and £3T3 have an effect on the input electrical admit-
tance at low frequencies or in the neighbourhoods of the
first resonance frequency in the lower and upper
branches. It may therefore be possible to determine these
coefficients using measured values of admittance.
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