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In this paper we compare energy transfer rates in
magnetohydrodynamic turbulence using field-theoretic
method. Our calculation shows that there is a large
energy transfer rate from the large-scale velocity field
to the large-scale magnetic field. The growth of large-
scale magnetic energy is primarily due to this transfer.
We reached the above conclusion without any linear
approximation like that in o.-dynamo.

THE generation of magnetic field in astrophysical bodies,
e.g. galaxies, stars and planets is one of the outstanding
theoretical problems of physics and astrophysics. The
initial magnetic fields of galaxies and stars are weak, and
are amplified by the turbulent motion of the plasma. The
generated field gets saturated due to nonlinear inter-
actions. The above process is called ‘dynamo’ action.
Qualitatively, the magnetic field is amplified by the
stretching of the field lines due to turbulent plasma
motion. A fraction of kinetic energy of the plasma is
spent in increasing the tension of the magnetic field lines,
which effectively enhances the magnetic field strength.
Current dynamo theories of are of two types, kinematic
and dynamic. In the kinematic theories, one studies the
evolution of magnetic field under a prescribed velocity
field. In kinematic o-dynamo, the averaged nonlinear
term {u % b) (u, b are velocity and magnetic field fluctua-
tions respectively) is replaced by a constant o times
mean magnetic field By. This process, which is valid for
small magnetic field fluctuations, yields linear equations
that can be solved for a given boundary condition and
external forcing fields'”. In dynamic theories*®, the
modification of velocity field by the magnetic field (back
reaction) is taken into account. Using a different approach,
here we compute energy transfer rates from velocity field
to magnetic field using field-theoretic method. The strik-
ing result of our field theoretic calculation is that there is
a large energy transfer rate from the large-scale velocity
field to the large-scale magnetic field. We claim that the
growth of large-scale magnetic energy is primarily due to
this transfer.

There is an exchange of energy between various Fou-
rier modes because of nonlinear interactions present in
magnetohydrodynamics (MHD). Since there are two vec-
tor fields u and b in MHD, the energy can be transferred
from u to u, u to b, and b to b. Energy from a parent
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mode u(k) or b(k) (k represents the wave number of
Fourier mode) is transferred to two daughter modes with
wave numbers p and k — p. The allowed triads in MHD
are (u(k), u(p), u(k - p)) and (u(k), b(p), b(k - p)). The
net effects of all the energy transfers are constant energy
fluxes from large-scale u to small-scale u (T1.s), large-
scale u to small-scale b (I1;5), large-scale b to small-
scale u (I155), large-scale b to small-scale b (I155), and
large-scale u to large-scale b (ITj<). The superscript and
subscript of II refer to the source and sink respectively.
All these energy fluxes are illustrated in Figure 1. These
energy fluxes are analogous to that of Kolmogorov’s flux
in fluid turbulence. Note that large-scale velocity modes
are forced, as shown in Figure 1.

Staniéi(’:7, Dar et al.s, and others have given formulae
for computation of the above fluxes. However, the forma-
lism by Dar er al.® is the most general; they have numeri-
cally computed all the fluxes of MHD using numerical
data of direct numerical simulation. In the present paper,
we compute the MHD fluxes in the inertial range using
field-theoretic method. Our calculation is up to first-order
in perturbation.

We give a brief outline of the theoretical calculation
(refer to Verma® for details). We write down the evolu-
tion equation for kinetic energy spectrum ({|Ju(k)*)/2) and
magnetic energy ({|B(K)[")/2). We carry out our analysis
for three space dimensions, constant mass density, and
zero mean magnetic field. We also assume that {u-b) = 0,
and that the large-scale velocity modes are forced. There
is a net outflow/inflow of energy from a wave number
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Figure 1. Various energy fluxes in wave number space for parameter
(ra =5000, rg = 0.1, rny =—0.1). The illustrated wave number spheres
contain u< and b< modes, while u> and b> are modes outside
these spheres. The energy fluxes are from large-scale u to small-scale
u (TI%S), large-scale u to small-scale b (HZ: ), large-scale b to
small-scale 1 (1S ), large-scale b to small-scale b (I1 b>)» and large-
scale u to large-scale b (HZ: ). The velocity fields at large-scale are
forced, and the net input energy is 1 unit. Solid and dashed lines repre-
sent the nonhelical and helical contributions respectively.
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sphere (say sphere of radius k;) as discussed earlier.
These energy fluxes can be easily calculated using the
Fourier modes. To illustrate, the energy flux from the
modes inside of the u-sphere of radius %, to the modes
outside of the b-sphere of radius %, is given by

_dk _dp
(@2n)* P>k (2m)?

% (S (k- u(g)] [b(k)-u(p)]), (0

where 3 stands for the imaginary part, and k=
p + q. Clearly, the sources of energy for the 5< sphere
are T145, [1%2 and I192. If there is a net flux of energy
into large-scale magnetic energy, then magnetic energy at
large-scale will grow, or dynamo will be active.

We calculate the energy fluxes perturbatively to first
order. We assume homogeneity and isotropy for the flow.
In the correlation functions we have included kinetic
helicity (Hx = {u-)/2, where o is the vorticity) and mag-
netic helicity (Hy = (a-b)/2, where a is the vector poten-
tial), which are defined using

Hllﬁ (ko) = J.k'>k0

Cuty () (K)) =

2Hy (k)

{Py— (K)C™ (k) — i jy k, T} S(k+k), (2)

(b, (k)b (K)) =
[P, (K)C? (k) =iyl Hyg (OB (R +K). (3)

Note that helicities break mirror symmetry.

We focus on the fluxes in the inertial range. On the basis
of recent theoretical'®'* and numerical'>'¢ evidences, we
take Kolmogorov’s spectrum for the correlation functions
in the inertial range, i.e.

C* (k) :Ij_nznk—nn; CPU) = C () /ry: (4)
T

Hy (K) = rckC™ (k); Hy (k) =1y C” (k)/k, (5)

where IT is the total cascade rate, and K” is the Kolmo-
gorov’s constant.

Since both magnetic and kinetic energy spectrum are
Kolmogorov-like in the inertial range, r,, ¢ and ry can
be treated as constants. We also use turbulent or re-
normalized viscosity and resistivity in our calculation.
These quantities have been recently derived by Verma''’.
Using the steady-state condition, we also calculate the
energy supply from the large-scale velocity field to
the large-scale magnetic field IT)S = T155 +T125. Since
the inertial-range energy spectrum is universal, the above
energy flux is independent of the details of large-scale
forcing.
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Figure 1 shows both nonhelical (solid line) and helical
(dashed line) contributions for the case (v, = 5000, r¢ =
0.1, ny=—-0.1). Large r, (here r, = 5000) corresponds
to a very weak magnetic field compared to the
velocity field, similar to the early phase of galactic and
stellar evolution. The choice of rx = 0.1 and ry=- 0.1 is
motivated by the fact that both kinetic and magnetic
helicities in most of the astrophysical plasmas are rela-
tively small. The recent simulations of Brandenburg'® as
well as the EDQNM calculation of Pouquet er al.* show
that the magnetic helicity is negative for small wave
numbers. Since the small wave number contributions
dominate those from the large wave numbers, we have
taken ry < 0.

The flux ratios shown in Figure 1 illustrate some impor-
tant results. They are:

(i) There is a large energy flux from large-scale velocity
field to large-scale magnetic field (IT;5). In addi-
tion, there are two other fluxes, 157, i + 142 cicar» O
the large-scale magnetic field. These fluxes are res-
ponsible for the growth of large-scale magnetic field
in the initial stage of evolution. Pouquet et al®, Pouquet
and Patterson'®, Brandenburgls, and others generally
highlight TI22, .., inverse transfer, and do not con-
sider IT;S. Recently, Brandenburg'®*® had argued that
large-scale magnetic energy is sustained by nonlocal
inverse cascade from the forcing scale directly to the
largest scale of the box. He relates this effect to the o-
effect. In this paper and in ref. 9, we have computed the
relative magnitudes of all three contributions for generic
parameters discussed above, and find all of them to be
comparable; however, IT}< is somewhat higher.

(ii)) As shown in Figure 1 the nonhelical component
of magnetic energy flux (Hg;) is forward, while the
helical component of magnetic energy flux is negative
(inverse). The overall magnetic energy flux, however, is
positive.

In our theoretical calculation we have assumed homo-
geneity and isotropy of the flow, as well as B, = 0. These
assumptions are likely to hold in the early stages of the
galactic evolution before large structures appear. The
galaxies are known to be disc-shaped (two-dimensional)
and typically of the spiral form. Hence, our theoretical
results may seem inapplicable in the case of galaxies.
However, we believe that physics described here is rele-
vant at the intermediate scales in the spirit of Kolmo-
gorov’s universal theory of turbulence. The energy
transfer at the intermediate scales is independent of
large-scale structures and small-scale dissipation pro-
cesses. In addition, MHD turbulence exhibits similar
cascade behaviour in both two and three dimensions®"’.
Hence, our model can be an important ingredient in the
full-fledge galactic model even though it cannot by itself
describe the evolution of galactic magnetic field. We
assume that the energy cascades in galaxies can be
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described by the model presented here, and attempt to
estimate the magnetic energy growth time-scale.

To model the early evolution of galaxies, we assume
that the large-scales contain kinetic and magnetic ener-
gies. During this unsteady period, magnetic energy (Eb)

will be amplified by the nonhelical sz, and helical
b> > .
components IT,Z, . . and IT,Z o0, i€
dE® (1) b
ar =T152 + Ty Zhetical + I hetical (6

We assume quasi-steady state for the galactic evolution.
Our theoretical calculation performed for large r5 shows
that the energy fluxes on the right-hand-side of eq. (6)
are proportional to TIE”/E“, where E“ is the kinetic
energy, and II is the total energy flux or energy supply
rate. Using Kolmogorov’s spectrum, we obtain

JE"

E’(t)= E®(0) exp Wt

7

where L is the large-length of the system and K“=1.
Clearly, the magnetic energy grows exponentially in the
early periods and the time-scale of growth is of the
order of L/(E")Y?, which is the eddy turnover time.
Taking L ~10" km and (E")"?= 10 km/s, we obtain the
growth time-scale to be 10'°s or 3 x 10° years, which is
in the expected range’'. Hence, we are able to construct a
nonlinear and dynamically consistent galactic dynamo
based on the energy fluxes. In this model, magnetic
energy grows exponentially, and the growth time-scale is
reasonable’’. To recapitulate, we address the dynamo
problem in the light of turbulent energy flux.

Our approach is different from the o-dynamo picture.
Our theoretical calculation, based on perturbative field
theory, shows large amount of energy transfer from
large-scale velocity field to large-scale magnetic field.
This transfer occurs in both helical and nonhelical MHD.
We believe magnetic energy growth is primarily due to
this energy transfer. Regarding magnetic energy flux,
there is (i) nonhelical forward flux from large scales to
small scales, and (ii) helical inverse transfer from small
scales to large scales. The net magnetic energy transfer,
however, is positive.

We have constructed a model of galactic dynamo
based on our energy flux results. We find that magnetic
energy grows exponentially, and our estimate of its
growth time-scale is consistent with the current observa-
tional estimates”'.
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