RESEARCH ARTICLES

ACKNOWLEDGEMENTS. This work was supported by a grant from the Department of Science and Technology, Govt of India. We thank staff in the X-ray laboratory and workshop, the Bioinformatics Centre and Supercomputing Education and Research Centre, IITs for help during the course of these investigations. V.S. and S.P. were supported by a CSIR fellowship.

Received 15 March 2002; revised accepted 13 April 2002

Chemical composition of rainwater around an industrial region in Mumbai

Indian Institute of Tropical Meteorology, Pune, 411 008, India

Chemical analysis of rainwater samples collected at Kalyan, a downwind location of a large industrial belt, and at Alibag and Colaba, the upwind locations, during the southwest monsoon season of 1994 and 1995 and comparison with similar data of 1973–74 reveal that pH of rainwater at Kalyan which was alkaline 20 years ago became acidic due to long-term effect of pollutants. A decreasing trend in excess SO2 was observed at Colaba and Kalyan, which is attributed to the pollution control measures adopted by industries and switching over from coal to natural gas which contains low sulphur. Whereas the increasing trend in NOX observed at Kalyan and Colaba, is attributable to increased automobile emission.

RAINWATER serves as a collector of many minor constituents of the atmosphere. Hence, the results of rainwater

*For correspondence. (e-mail: ms-naik@tropmet.res.in)

CURRENT SCIENCE, VOL. 82, NO. 9, 10 MAY 2002

1131
living in Asian countries in the future, might repeat the
alarm of acidification as has happened in Europe and
North America. Southern China is already in the grip of
acid rain due to rapid industrialization.

There are very good reasons to consider environmental
problems facing developing tropical countries such as
India, where significant rates of population growth cause
large increase in SO$_2$ and NO$_2$ emissions. According
to estimates of Streets et al., the emission of SO$_2$ in India
was 4437.2 Gg yr$^{-1}$ in 1990, which increased by 21% up
to 1995 and 29% up to 1997. Similarly emission of NO$_2$
was 3235.5 Gg yr$^{-1}$ in 1990, which increased by 28% up
to 1995 and 34% by the end of 1997.

In India, studies relating to the acid rain are limited.$^{2-11}$
The common feature in most of the studies on the
chemistry of Indian precipitation is the high pH value all
over the country. The acid rain is reported only in a few
industrial pockets.$^{12-14}$

Mumbai is one of the most important commercial and
industrial centres in India. Kalyan, a large urban area in
Mumbai region, comes under downwind of a large indus-
trial belt during the southwest monsoon (SW) season.
In order to see the effect of anthropogenic pollutants on
precipitation at Kalyan, rainwater samples were collected
there during SW monsoon seasons of 1994 and 1995, and
at two other locations in the upwind, namely, Alibag and
Colaba. In this paper, the main objective is to study the
precipitation chemistry over industrial and non-industrial
regions and compare the same with the past data.

The magnitude of wet deposition of pollutants is of
considerable importance as it indicates the intensity and
local impact of the pollution source. Thus, this type of
study is useful in assessing the air quality in industrial
areas and in implementing emission-reduction policies.

Location of sampling sites

Location of the sampling sites, namely Alibag (18°38'N,
72°52'E), Colaba (18°52'N, 72°47'E) and Kalyan (19°15'N,
73°07'E) is shown in Figure 1. Alibag, Colaba and Kal-
yan are located in Raigad, Brahan Mumbai and Thane
districts respectively in Maharashtra. The area that
includes a portion of the three districts (shown in Figure 1)
is called the Mumbai region in the present study. All the
three sampling sites are situated on the windward side of
the Western Ghats. Alibag and Colaba are situated on the
west coast of India and Kalyan on the northeastern side
of the Mumbai region. There are about 40,000 large,
medium and small-scale industries existing in the vicinity
of Mumbai city. Majority of them are situated in the
Chembur–Thane–Belapur belt which is reported to be
a highly industrialized area of the city. Solid strips in
Figure 1 represent the areas of major industrial estab-
ishments. Major industrial establishments located in
the above areas are refineries, petrochemical complexes,
cotton mills, textile factories, synthetic material plants,
The monsoon seasons of 1994 and 1995 using stainless-steel funnels of 30 cm diameter fitted onto one-litre capacity polyethylene bottle.

Rainwater samples were collected on the terrace of the Abhinav Vidhya Mandir School at Kalyan at the height of about 10 m above the ground. The samples were collected at the campus of Regional Meteorological Centre, Colaba and at the Geo-magnetic Observatory, Alibag. The sampling height was about 1 m above the ground, at these two sites.

To avoid dry deposition, the funnels were washed with distilled water in the morning and evening. However, contamination due to dry deposition could not be completely avoided. The sample was removed at 0830 h, if it rained during the previous night or at 1730 h if it rained during the daytime. The rainwater samples were periodically brought to the Institute, filtered through Whatman-41 filter paper and refrigerated at 4°C in the chemistry laboratory till all ionic components were analysed.

The concentrations of Na, K, Ca and Mg in the above samples were determined using Perkin-Elmer 373, double-beam Atomic Absorption Spectrophotometer with air-acetylene flame. The concentrations of SO₄, NO₃, NH₄ and Cl were determined using colorimetric methods. SO₄ was determined by barium iodide method¹ and NO₃ was determined by brucine sulphate method² and that of NH₄ was determined using Berthelot colour-reaction procedure³. The pH values were measured with a digital pH meter, using reference (KCl) and glass electrodes, standardized with pH of 4.0 and 9.2 reference buffers before pH determination.

The calibrations for different chemical constituents were obtained by preparing low-level standard solutions using AR-grade chemicals. These calibrations were periodically repeated to check the accuracy. The analytical errors were nominal and varied within ±10%.

The data obtained using the above methods of analysis were subjected to statistical filtering technique described elsewhere⁶, to identify and eliminate data from samples that may have been heavily contaminated.

Results and discussion

Chemical composition of rainwater

The average concentration (mg l⁻¹) of major ionic components, pH value and standard deviation (SD) in rainwater at Alibag, Colaba and Kalyan during monsoon seasons of 1994 and 1995 are given in Table 1. The chemical composition of rainwater at Chembur²¹ is also included for comparison. The relative percentage contribution of different anions and cations to the total ionic content at the three locations was calculated from the average composition of Alibag, Colaba and Kalyan, and plotted in Figure 3. Relative percentage contribution was also calculated from the composition at Chembur²¹ and plotted. From Figure 3, it is seen that in rainwater at Alibag and Colaba, sea salt (Na and Cl) contributed the most (69% and 54%) to total ionic content. The concen-

<table>
<thead>
<tr>
<th>Location</th>
<th>Cl</th>
<th>SO₄</th>
<th>NO₃</th>
<th>NH₄</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alibag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>8.37</td>
<td>1.77</td>
<td>0.57</td>
<td>0.15</td>
<td>5.07</td>
<td>0.32</td>
<td>2.66</td>
<td>0.77</td>
<td>6.74</td>
</tr>
<tr>
<td>SD</td>
<td>5.97</td>
<td>1.50</td>
<td>0.47</td>
<td>0.13</td>
<td>4.39</td>
<td>0.27</td>
<td>1.90</td>
<td>0.50</td>
<td>0.46</td>
</tr>
<tr>
<td>Colaba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>6.10</td>
<td>2.48</td>
<td>2.08</td>
<td>0.22</td>
<td>4.12</td>
<td>0.35</td>
<td>3.10</td>
<td>0.71</td>
<td>6.38</td>
</tr>
<tr>
<td>SD</td>
<td>3.96</td>
<td>2.12</td>
<td>1.19</td>
<td>0.11</td>
<td>2.47</td>
<td>0.21</td>
<td>1.78</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Kalyan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>4.75</td>
<td>5.30</td>
<td>4.10</td>
<td>0.26</td>
<td>3.40</td>
<td>0.39</td>
<td>2.60</td>
<td>0.58</td>
<td>5.28</td>
</tr>
<tr>
<td>SD</td>
<td>3.07</td>
<td>2.07</td>
<td>1.87</td>
<td>0.15</td>
<td>2.11</td>
<td>0.32</td>
<td>1.23</td>
<td>0.41</td>
<td>0.96</td>
</tr>
<tr>
<td>Chembur*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>5.00</td>
<td>20.20</td>
<td>N.R.</td>
<td>2.10</td>
<td>2.20</td>
<td>1.10</td>
<td>3.10</td>
<td>0.68</td>
<td>4.80</td>
</tr>
</tbody>
</table>

*From Soqueira⁵.

Figure 2. Wind roses for Alibag and Colaba for the period June-September 1994–95.
tation of NO₃ was low at Alibag (3%) and Colaba (11%). On the contrary, at Kalyan, SO₄ and NO₃ together (SO₄ + NO₃) contributed the most (44%) to the total ionic content followed by Cl, Na and Ca. The percentage contribution of SO₄ alone (NO₃ was not reported) was maximum (59%), followed by those of Cl, Ca, Na at Chembur, which reflects the influence of industrial activity in the region.

The average concentration of SO₄ is maximum at Chembur (20.2 mg L⁻¹), a highly industrialized location in Mumbai and minimum at Alibag (1.77 mg L⁻¹) (Table 1). Although Colaba is situated upwind of the industrial belts on the west coast, the average concentration of SO₄ (2.48 mg L⁻¹) was higher (one and a half times more) than that at Alibag (1.77 mg L⁻¹). This could be due to the proximity of Colaba to the industrial complexes. Low concentration of SO₄ at Alibag indicates that the location is relatively free from pollution. The second maximum concentration was observed at Kalyan (5.3 mg L⁻¹) which is situated downwind of industrial complexes. Sulphate in rain arises mainly from anthropogenic emission, which is indicated by the above observations. The sulphate from sea spray is neutral and does not increase the acidity of rainwater[22]. However, SO₄ from anthropogenic sources is considered as a major component which increases the H-ion concentration in rainwater and hence decreases its pH. The average concentration of NO₃ was minimum at Alibag (0.57 mg L⁻¹) and maximum at Kalyan (4.1 mg L⁻¹). The presence of NO₃ in rainwater is considered to be responsible for the increase of H-ion concentration.

With growing energy consumption, the NOₓ emissions are expected to rise. If NO₂ is differentiated according to its sources, the substantial part is found to be due to traffic in urban areas.

The average concentration of NH₄ was maximum at Kalyan (0.26 mg L⁻¹) and minimum at Alibag (0.15 mg L⁻¹). The important sources of atmospheric NH₃ are considered to be animal wastes, fertilizers and some industrial activities[23,24].

It is surmised that observed concentrations of some ionic species at Mumbai (Table 1) reflect the impact of pollution sources. Hence, ionic concentrations of rainfall at the three locations (Table 1) were compared with data from Gopalpur near Agra[25] and Hyderabad in India[26], Izmir (industrial area) in Turkey[27], and Seoul in Korea[28] (Table 2).

The area around Gopalpur is predominantly in agricultural use and there are no other point sources at the site. Hyderabad is growing industrially and there is exponential increase in the population and vehicular pollution. The industrial establishments located near Izmir are a refinery, petrochemical complex, iron work plant, paper and pulp factory and fertilizer plant. Seoul is an urban station in Korea.

It is evident from Table 2 that the concentrations of acidic components SO₄ and NO₃ are higher at Kalyan than those reported at other locations. The concentration of Ca at Kalyan is similar to that at Gopalpur, but higher than other reported locations. Since concentrations of acidic components SO₄ and NO₃ were double at Kalyan compared to that at Seoul, the pH value at Kalyan was expected to be more acidic than that at Seoul. On the contrary, pH at Seoul is more acidic. This may be due to the fact that concentration of Ca, which neutralizes the acidity, is four times higher at Kalyan than that at Seoul.

Ratios of major components to sodium

The ionic constituents such as SO₄, K, Ca and Mg in precipitation are derived either from marine or from non-marine origins, such as anthropogenic and natural emis-

![Figure 3. Percentage contribution of ionic components to the total ionic content of rainwater.](image)

<table>
<thead>
<tr>
<th>Area</th>
<th>Period</th>
<th>pH</th>
<th>Cl</th>
<th>SO₄</th>
<th>NOₓ</th>
<th>NH₄</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gopalpur, India*</td>
<td>1996</td>
<td>6.1</td>
<td>7.4</td>
<td>31</td>
<td>15</td>
<td>43</td>
<td>43</td>
<td>19</td>
<td>3</td>
<td>134</td>
</tr>
<tr>
<td>Hyderabad, India*</td>
<td>1999</td>
<td>6.34</td>
<td>73</td>
<td>30</td>
<td>29</td>
<td>-</td>
<td>38</td>
<td>8</td>
<td>41</td>
<td>20</td>
</tr>
<tr>
<td>Izmir, Turkey²</td>
<td>1994</td>
<td>5.64</td>
<td>117</td>
<td>66</td>
<td>23</td>
<td>43</td>
<td>117</td>
<td>17</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>Seoul, Korea*</td>
<td>1996–1998</td>
<td>4.7</td>
<td>18</td>
<td>71</td>
<td>30</td>
<td>66</td>
<td>11</td>
<td>3.5</td>
<td>35</td>
<td>7</td>
</tr>
</tbody>
</table>

*From Satsangi et al.[3]; *From Srinivas et al.[25]; *From Al-Monani et al.[26]; *From Lee and Pacyna[27].

1134 CURRENT SCIENCE, VOL. 82, NO. 9, 10 MAY 2002
sions. Hence, it is necessary to discriminate sea salt (ss) SO₄, K, Ca and Mg from non-sea salt (nss) SO₄, K, Ca and Mg for a city like Mumbai, which has a marine environment. The non-marine components of these elements were evaluated from the Na concentration on an assumption that all the Na ions originated from the sea. The marine (ss) and non-marine (nss) contributions and their percentage to the total ionic content in rain were calculated using ratios like Cl/Na, K/Na, Ca/Na, Mg/Na and SO₄/Na in bulk sea water²⁸, and using the following formulae²⁹.

\[
\text{nss } X = \text{Total } X_{\text{min}} - \text{ss } X,
\]

where

\[
\text{ss } X = [\text{Na}]_{\text{min}} \times \left(\frac{X}{[\text{Na}]_{\text{sea}}}\right).
\]

\(X\) is an ionic component in rain and \(X/\text{Na}\) the standard sea–water ratio.

The percentage contributions of SO₄, K, Ca and Mg were 28, 42, 92 and 21 from non-marine (nss) sources at Alibag and those at Colaba were 58, 58, 95 and 30, respectively. However, percentage contributions of SO₄, K, Ca and Mg from non-marine sources at Kalyan (84, 69, 95 and 30, respectively) were higher than those obtained from Alibag and Colaba. Using the above equations, reported percentage contribution from non-marine sources³⁰ for Delhi, Pune and Goa showed similar results and varied from 56 to 99.4% for SO₄, 15 to 99.7% for K, 90 to 99.2% for Ca and 10 to 63% for Mg. This shows that although sea water is the primary source of SO₄, K, Ca, and Mg, there is another source for Ca, K, Mg and SO₄ at Alibag, Colaba and Kalyan. The non-marine sources of K, Ca and Mg in rainwater samples are mainly crustal, soil or construction-generated calcium oxide, hydroxide and carbonate³⁰. The other sources are point-source emissions from fuel combustion and industrial processes, as well as open-source emissions associated with traffic on unpaved roads, agricultural tillage practices and natural particle emissions from forest fires or wind erosion of arid soils³¹. The main industrial sources identified for Ca are cement plants, iron and steel plants³². For urban areas, anthropogenic emissions are of importance, whereas for the other places, soil is the major contributor. These elements (K, Ca and Mg) are potentially basic in nature and their presence in high concentrations in rainwater helps in neutralizing the acidic effects of anthropogenic emissions (SO₄ and NO₃) and in maintaining the pH of rainwater in the alkaline range.

The nss SO₄ was minimum (28%) in rainwater at Alibag. However, at the other coastal station of Colaba, which has proximity to the industrial complexes the nss SO₄ was 58%, indicating that it is affected by pollutants from the nearby industrial complexes. The nss SO₄ was found to be high at Kalyan (84%) and Chembur (97%). This observation suggested that the rainwater at Kalyan is influenced by pollutants emitted by anthropogenic sources.

Chemical composition of first rain event

The chemical composition of the first rain event at Kalyan which occurred on 3 June 1995 was compared with that of a successive rain event which occurred on 4 June 1995. It was found that the concentrations of Cl, Na, NO₃, K, Mg, SO₄ and Ca were higher in the first rain event compared to those in the next successive sample. The concentrations of Cl, Na, NO₃, K and Mg decreased by about 31–34% and those of SO₄ and Ca by 28 and 41%, respectively in the next successive rain event. This may be due to rapid below-cloud scavenging of components that are of mere local origin. There are, however, other factors that could explain the same phenomenon: higher evaporation rate during the initial phase due to entrainment of dry air, relatively low precipitation rate and change in origin of the air mass that is scavenged³³. However, the concentration of NH₄ did not decrease, but increased by 17% in the next successive rain event. This suggests that below-cloud scavenging of NH₄ is not the only process that is contributing to rain, but other processes such as diffusion of gaseous NH₃ or rainout also contribute³⁴.

pH of rainwater

The reference level commonly used to compare acid precipitation to natural precipitation is pH 5.65, the value that results from the equilibration of atmospheric carbon dioxide with precipitation. The pH values in the present study are interpreted in the light of the carbon dioxide equilibrated value (5.65).

As seen from Table 1, the average pH value at Alibag was alkaline (6.74) and it varied from 6.0 to 8.0. The pH value at Colaba was also alkaline (6.38) and varied from 5.46 to 7.50. However, the average pH value at Kalyan was acidic (5.28) and varied from 4.0 to 7.50. In order to see the pH distribution, the pH values of all rainwater samples for each site (Alibag, Colaba and Kalyan) were classified into nine categories, namely 4.0 to 4.49, 4.50 to 4.99, 5.00 to 5.49, etc. The frequency distribution of pH values for these nine categories was plotted for the three sites (Figure 4). The standard deviations in each category of pH values were calculated and they varied from 0.10 to 0.23.

As seen from Figure 4, all the samples at Alibag had pH > 6.0. In case of Colaba, a large fraction of the samples had pH > 5.65 but only 4% of the samples had values which varied from 5.46 to 5.65. However, pH distribution at Kalyan was different from that at the above two stations and values showed wide variation (4.0 to 7.50). About 55% of the samples at Kalyan had pH > 5.65, 30% of samples were acidic (< 5.65), and the remaining samples appeared with pH ≈ 5.6.

Acidic pH values reveal the presence of strong acids in rainwater, while neutral or alkaline pH values are attri-
RESEARCH ARTICLES

distributed to the effect of soil dust, predominantly CaCO₃ and MgCO₃, and ammonia. The pH values are, by and large, alkaline in India. However, acid rain is reported only at a few places.

It is assumed that acidic precipitation originates from H₂SO₄ and HNO₃. Atmospheric alkaline species such as Ca, Mg, and K mostly originate from the soil and NH₄ is able to neutralize the acidity. In order to study the impact of acidic and alkaline species on rainwater, the correlation coefficients were worked out between H (hydrogen ion) and SO₄, NO₃, K, Ca, and Mg from individual samples for the three stations for two years (1994–1995). A significant (> 5% level) negative correlation was found between H and K, Mg, and Ca at Alibag and Colaba. This result shows that K, Ca, and Mg play a major role in buffering the acidity present in the atmosphere. The influence of alkaline components such as Ca, Mg, and K on the pH of rainwater, snow, and cloud in India has been reported. The high concentration of alkaline components (K, Ca, and Mg) is responsible for high pH of rainwater in India.

The H ion did not show any specific relationship with K, Ca, and Mg at Kalyan but it showed significant positive correlation with SO₄ (r = 0.28) and NO₃ (r = 0.27). This observation suggests that rainwater at Kalyan is influenced by secondary pollutants such as SO₄ and NO₃. The major industrial establishments in the upwind of Kalyan include a refinery, petrochemical complex, thermal power plant, etc. Therefore, it is likely that the rainwater samples collected at Kalyan have been influenced by anthropogenic emissions, turning rainwater acidic.

Long-term change in precipitation chemistry

Industrialization and urbanization processes have been accelerated in the Mumbai region during the past 20 years with installation and expansion of industries and growth of urban centre eastward along the north-south direction. The number of industrial establishments and vehicles in Thane district has increased by 350% from 1987 to 1995 (ref. 39). Population has doubled within the ten-year period from 1981 to 1991, and forest cover has reduced by 19% in 1994 compared to 1972.

It is known that industrialization, urbanization, number of vehicles and population in an area grow together. It has been found through graphical representation of industrial establishments (I) and number of vehicles (V) that, V and I are approximately linearly related. The correlation coefficient between V and I (r = 0.91) is significant at 1% level. The equation of variation is given below.

\[V = 1956 + 82.66I \]

In order to examine the long-term change in rainwater due to pollutants at Alibag, Colaba and Kalyan, the concentrations of major ions (SO₄, NO₃, and Ca) and pH values of the present work were compared with those reported in the rainwater of 1973 and 1974 (ref. 40). Table 3 shows the concentration of NO₃, nss Ca and nss SO₄ along with pH values at Alibag, Colaba and Kalyan during 1973–74 and 1994–95.

The comparison showed that the concentration of nss Ca had increased at the three locations. It increased by 18, 27 and 11% at Alibag, Colaba and Kalyan respectively. The concentration of SO₄ had decreased at all the three sites. It decreased by 6% at Alibag, 40% at Colaba and 15% at Kalyan. However the concentration of NO₃ increased at all locations, but significantly at Colaba (292%) and at Kalyan (132%). The pH value at Alibag and Colaba decreased by about 0.4 and 0.8 units, respectively, during the two decades. But pH value, which was close to neutral at Kalyan during 1972–73, became acidic in 1994–95.

The observed increase in concentration of Ca at Alibag, Colaba and Kalyan may be due to urban development, road construction and traffic on unpaved roads. Similar sources were reported for Ca³⁺. The observed decreasing

<table>
<thead>
<tr>
<th>Location</th>
<th>Period</th>
<th>nss Ca (µeq l⁻¹)</th>
<th>nss SO₄ (µeq l⁻¹)</th>
<th>NO₃ (µeq l⁻¹)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alibag</td>
<td>1973–74</td>
<td>2.10</td>
<td>0.53</td>
<td>0.47</td>
<td>7.10</td>
</tr>
<tr>
<td></td>
<td>1994–95</td>
<td>2.47</td>
<td>0.50</td>
<td>0.57</td>
<td>6.74</td>
</tr>
<tr>
<td>Colaba</td>
<td>1973–74</td>
<td>2.32</td>
<td>2.43</td>
<td>0.53</td>
<td>7.20</td>
</tr>
<tr>
<td></td>
<td>1994–95</td>
<td>2.94</td>
<td>1.45</td>
<td>2.08</td>
<td>6.38</td>
</tr>
<tr>
<td>Kalyan</td>
<td>1973–74</td>
<td>2.23</td>
<td>5.23</td>
<td>1.77</td>
<td>5.70</td>
</tr>
<tr>
<td></td>
<td>1994–95</td>
<td>2.47</td>
<td>4.45</td>
<td>4.10</td>
<td>5.28</td>
</tr>
</tbody>
</table>

Figure 4. Frequency distribution of pH at Alibag, Colaba and Kalyan.
trend in concentration of SO₄ at Colaba and Kalyan may be due to the change in the use of fuel from coal to natural gas which contains less sulphur, and also the pollution control measures taken by industries. Similar decreasing trend was observed during 1976–1990 at Chembur⁵. The significant increase in NO₃ observed at Colaba and Kalyan may be due to increasing emission of NO₂ due to combustion of fossil fuel by vehicles and by other industries. Thus SO₄ and NO₃, which originated from anthropogenic sources showed opposite trend. Similar decreasing trend in the sulphate and increasing trend in nitrate concentration were reported for different countries like Central and Western Europe and North America⁴²–⁴⁶.

Conclusions

The study of chemical composition of rainwater collected at Alibag, Colaba and Kalyan during 1994 and 1995 suggested that the alkaline pH values observed at Alibag and Colaba may be due to influence of alkaline components that originated from the soil. The observed acid rain at Kalyan is due to emissions of sulphur and nitrogen from combustion of fossil fuel by vehicular traffic and other industries. The long-term change in chemical composition was observed during a 20-year period. SO₄ and NO₃ which originated from anthropogenic sources showed opposite trend, i.e. decreasing and increasing, respectively in the 20-year period. The average pH at Kalyan which was alkaline 20 years ago became acidic. The pH values at Alibag and Colaba have also decreased, but they are still in the alkaline range.

Acknowledgements. We thank Dr G. B. Pant, Director, and Dr P. C. S. Devara, Deputy Director, IITM, Pune for their encouragement to carry out this research work. We are grateful to the Deputy Director General of Meteorology, Regional Meteorological Centre, Colaba; the Director, Indian Institute of Geo-magnetism, Alibag, and the Principal, Abhinav Vidhya Mandir, Kalyan for providing facilities for collection of rainwater samples.

Received 2 August 2001; revised accepted 11 February 2002