Alpha-terthienyl: A plant-derived new generation insecticide

Manish Nivsarkar*, Bapu Cherian and Harish Padh

Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development Centre, Thaltej, Ahmedabad 380 054, India

Alpha-terthienyl, a naturally occurring secondary plant metabolite is found in abundance in the roots of Tagetes species (family Asteraceae). It is activated by ultraviolet light and is toxic to a number of insect species. It generates oxygen radical species and has capacity to inhibit several enzymes like both in vivo and in vitro. Alpha-terthienyl possesses all the desirable properties of a good insecticide/pesticide. It is fast acting, non-toxic, economic and a property of degradation makes it more user friendly and safe. Secondary plant metabolites will play an important role in future insecticide development programme.

MAN has suffered from the activities of mosquito since time immemorial. It is believed that mosquitoes rank as man’s most important insect pest. They influenced and still influence his selection of living and working sites. They scorch him with their vicious biting attacks and continuous singing, but more serious are the diseases that they transmit to man and his pets (Table I).

Synthetic insecticides such as organochlorines, organophosphorous, carbamates, synthetic pyrethroids, etc. are commonly used to control these pests. Consumption of these insecticides/pesticides is very high, specially in India (Figure 1).

The greatest harm from chemical insecticides is that, once introduced into the system, they may remain there forever or for a very long duration. Thus they pose a threat to life and help insects to develop resistance against them. This is the reason there has always been a need for such an insecticide which is more powerful, with lesser side effects and degrading after sometime, reducing the chance to develop resistance against it. Scientists are now accepting the fact that such resistance is inevitable and that it is just matter of time before all pesticides are neutralized by some adaptive mechanism of the pests1. The exact impact of these residues is not known, but tests conducted on the affected animals show frightening evidence of genetic defects and cancer2.

Plant-derived insecticides

Plants have always been a rich source of chemicals and drugs for man3. During the 20th Century, a few of these natural compounds like nicotine, rotenone and pyrethrins have been used commercially as insecticides2. However, plants produce thousands of other compounds that are insecticidal and have diverse modes of action like hormonal, neurological, nutritional or enzymatic5. Phototoxins are unique among these plant compounds in that their toxicity is greatly increased when irradiated with light.

A number of plant families are known to produce alkaloids, phenolics and oils which have been used for insect control since a long time. They were called as insect killers and were used by Romans and Chinese6. Another group of plant products discovered in the last two decades are known as secondary plant metabolites. These were considered as waste products from plants for a long time, because they were of no nutritional significance to insects. These secondary plant metabolites having insecticidal/pesticidal properties are of several types, viz. repellents, antifeedants, phagostimulants and toxins7.

Secondary plant metabolites

The plant family which is important in producing such secondary plant metabolites is Asteraceae, which has been considerably exploited to extract phototoxic com-

<table>
<thead>
<tr>
<th>Table 1. Diseases of humans and animals transmitted by mosquitoes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>Malaria (several kinds)</td>
</tr>
<tr>
<td>Yellow fever</td>
</tr>
<tr>
<td>Filariasis</td>
</tr>
<tr>
<td>Dengue fever</td>
</tr>
<tr>
<td>Encephalitis</td>
</tr>
<tr>
<td>Equine encephalitis</td>
</tr>
</tbody>
</table>
Table 2. Secondary plant metabolites shown to have toxic effects on insects

<table>
<thead>
<tr>
<th>Secondary plant metabolite</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino acids</td>
<td>Canavanine</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Pror-Cyanin tannins</td>
</tr>
<tr>
<td>Glucosinolates</td>
<td>Sinigrin</td>
</tr>
<tr>
<td>Lignas</td>
<td>Excelsin</td>
</tr>
<tr>
<td>Tannins</td>
<td>Glucolide-A</td>
</tr>
<tr>
<td>Steroids</td>
<td>Ecdysones</td>
</tr>
</tbody>
</table>

Table 2: Secondary plant metabolites shown to have toxic effects on insects

Pounds like thiophenes. A number of secondary plant metabolites have been extracted from plants which are repellents, antifeedants, phagostimulants, toxins, xenobiotics and allelochemicals. Alkaloids and phenolics are two important groups of secondary plant metabolites that regulate the tolerance level of plants and acceptance level of insects (Table 2).

In recent years, a lot of work has been done on control of insects by secondary plant metabolites, e.g. control of *Ostrinia nubilalis* by limnoids from Meliaceae and Rutaceae, psilolin growth reducer and feeding deterrent from *Psilotum nudum* and phenylheptatrine, an antifeedant against *Euxoa messoria*. Petroleum ether extract of some plants showed larvicial activity against mosquito larvae of *Anopheles stephensi* and *Aedes aegypti*. The extract of seven indigenous plants, *Ocimum basilicum*, *O. sanctum*, *Lantana camara*, *Vitex negudo*, *Azadiracta indica*, *Clemone voscosa* and *Blumea* species showed larvicial activity against 4th instar larva of filaria mosquito, *Culex quinquefasciatus*. Linseed also exhibits larvicial activity against mosquito larvae of *Culex pipiens*; alcoholic extract of *Cassia holosericea* has been shown to have larvicial action against larvae of *A. aegypti*. One such secondary plant metabolite discovered few decades back is alpha-terthienyl.

Alpha-terthienyl

Alpha-terthienyl (Figure 2) is a member of a new class of phototoxic compounds, having great potential as a pest control agent and is a potent insecticide/ larvicide. It possesses a quality of rapid decomposition compared to relative persistence of some synthetic insecticides.

This compound is shown to be phototoxic against a number of organisms, viz. microorganisms of achenes of marigold and nematodes, human erythrocytes, human skin and some herbivorous and blood-feeding insects like *Manduca sexta*, *Piaira rapae*, *Musca domestica*, *Tribolium castaneum* and *Rhopferia dominica* and mosquito larvae, *Aedes atropalpus*, *Aedes aegypti* and *A. intrudens*.

Alpha-terthienyl, once introduced into the medium containing mosquito larvae, enters into the anal gills which can be visualized by light microscopy or halide leakage, releasing all the electrolytes into the medium leading to death of the larvae. Treatment of alpha-terthienyl on herbivorous insects shows sclerotization of pupae and damage to the gut.

Many of the biomolecules and enzymes are targets of alpha-terthienyl in the presence of ultraviolet light, viz. DNA in vitro and in vivo, plasma membrane and membrane proteins and enzymes like glucose-6-phosphate dehydrogenase, malate dehydrogenase, acetylcholinesterase and superoxide dismutase in mosquito larvae. The oxygen-dependent phototoxicity of this compound has been reported to involve both Type I and Type II photodynamic reaction.

Mechanism of action of alpha-terthienyl

In presence of ultraviolet light, alpha-terthienyl causes phototoxicity to the mosquito larvae. In an attempt to
study toxicity of alpha-terthieryl on mosquito larvae in the laboratory, a crude extract of alpha-terthieryl and reference (market preparation) (33 ppb) showed 100% larval death with 55 min of exposure to alpha-terthieryl and ultraviolet light (366 nm)32 (Figure 3).

Superoxide dismutase and mosquito larvae

Although aerobic organisms are adapted for survival in oxygen in the concentration found in the atmosphere, higher concentration of oxygen has been shown to produce toxic effects33. In 1970, Yamamoto and his group36 reported that rats can be made tolerant to 100% oxygen by prior exposure to 85% oxygen. It was subsequently shown by Crapo and Tierney37 in 1974 that this increased tolerance is accompanied by an increase in superoxide dismutase activity, an enzyme present in the biological system known to dismutate superoxide anion radical to a less toxic hydrogen peroxide, which is further reduced to water by catalase38.

Superoxide dismutase is present in all eukaryotic cells such as yeast, plants and animals but absent in prokaryotic cells. This enzyme is present in large quantities in tissues possessing enriched oxygen supply, for example, rete mirabile and gas gland epithelium from swim bladder of marine fishes39. Anal gills of mosquito larvae are the organs which are comparable to the swim bladder of fishes, i.e. organs rich in oxygen supply.

An increase is observed in the superoxide dismutase activity from 1st instar to 4th instar larval stage32 (Figure 4). This increase seems to be a protective mechanism against hazardous oxygen derivatives. Superoxide dismutase is present in the entire gill, except in the tracheal network.

Alpha-terthieryl inhibits superoxide dismutase activity completely in all the four instars of mosquito larvae in the presence of ultraviolet light and this is an important step in the phototoxicity of this compound (Figure 4). The inhibition process is still unclear but, this inhibition may lead to accumulation of hazardous oxygen radicals leading to cell damage.

Superoxide anion radical generation

The oxygen-dependent phototoxicity of this compound has been reported by generating alpha-terthieryl radical40, singlet oxygen50 and superoxide anion radical41. Superoxide anion radical is formed when an electron is added to ground-state oxygen. A number of enzymes such as non-specific peroxidases42, xanthine oxidase43, nitropropane dioxygenase44, galactose oxidase, etc. have been shown to actually reduce oxygen to superoxide anion radical. Even thiophenes can convert ground-state oxygen to superoxide anion radical, as they are unstable and auto-oxidizable55,66.

Alpha-terthieryl generates superoxide anion radical both \textit{in vitro} and in the anal gills of mosquito larvae41. Bakker \textit{et al.}30, while studying inhibition of certain enzymes by alpha-terthieryl, claimed involvement of singlet oxygen in the photodynamic action of alpha-terthieryl against the enzyme being studied, since the known singlet oxygen quenchers like bovine serum...
albumin and sodium azide in the medium showed protective effect on the enzyme inhibited by alpha-terthienyl, while superoxide dismutase had no effect, thereby suggesting no role of superoxide anion in the inhibition of the enzyme.

The failure of superoxide dismutase to protect against phototoxicity of alpha-terthienyl can be interpreted, based on the fact that superoxide dismutase activity is inhibited by alpha terthienyl radical in vitro and superoxide radical both in vivo (in the anal gills of mosquito larvae of 1st, 2nd, 3rd and 4th instars) and in vitro, suggesting that alpha-terthienyl acts via oxyradical mechanism.

Membrane damage

Both the facts that alpha-terthienyl inhibits superoxide anion radical and generates free radical species give an idea that this may lead to irreversible cellular damage, which is further confirmed by spin-labelling studies.

The aqueous and lipid compartments of anal gill membrane when labelled with spin labels show cellular damage. Spin-labelling is a very useful tool in the study of membrane structure, viscosity, density and polarity of the local environment. The smallest change in these parameters can be studied accurately. Nivsarkar et al. showed that both the lipid and aqueous domains of the anal gill membrane are damaged after exposure of the anal gills to alpha-terthienyl in presence of ultraviolet light, in all the four instars of mosquito larvae.

Singlet oxygen can cause certain damages involving its sensitization by retina in the presence of light that damages the retina, skin eruptions, scarring and thickening caused by porphyrias and lipid peroxidation that damages fatty acid side-chains present in the membrane lipids.

Lipid peroxidation decreases membrane fluidity, increases leakiness of the membrane and inactivates membrane-bound proteins. It has also been demonstrated that superoxide anion radical can cause damages to membrane-bound proteins, membrane lysis, injury to many other organs and lipid peroxidation. This damage is suggested to be due to generation of free radicals and inhibition of superoxide dismutase activity.

Alpha-terthienyl can also be localized in the alimentary canal of mosquito larvae, and causes gastric irritation. Thus, it seems that alpha-terthienyl has a multidirectional toxicity in mosquito where it damages the nervous, respiratory and digestive systems of the larvae, giving no chance for survival (Figure 5).

Safety and other activities of alpha-terthienyl

‘Insect-visiting pesticide’ is an important factor in determining the safety and efficacy of a new pesticide. Several non-target insect species, especially the benefi-
cial insects like bees, silkworms, etc. are targets of synthetic/organic insecticides.

Alpha-terthieryl is of natural origin and has a degradation half-life of \(~4\text{ h}\) in sunlight\(^1\); it is non-residual and environment-friendly. However, toxicity has been reported in certain non-target species such as tadpoles\(^2\) and fishes\(^3\). However, no toxicity has been reported in other non-target insect species.

Besides being a mosquito-control agent, alpha-terthieryl has been shown to have several other activities in presence of ultraviolet light like antibiotic\(^4\), antifungal\(^5\), anti-HIV\(^4\) activities and a novel protein c kinase inhibitory action\(^6\). Alpha-terthieryl can be extracted from the roots of Tagetes species in petroleum ether and even the crude extract is effective against mosquito larvae\(^7\). Alpha-terthieryl can be purified further using a silica column (80–120 Å). Alpha-terthieryl is also available commercially with Aldrich, USA.

Conclusion

Alpha-terthieryl is emerging as a potentially sound, potent mosquito control agent, with low cost, easy-to-administer and risk-free properties. In addition to the conceptual facts that this secondary plant metabolite may act as an antifeedant, an inhibitor of various enzymes, generator of active oxygen species and free radicals, it shows tremendous capacity to totally shatter the oxyradical defence mechanism existing in the anal gills, thrusting the larvae to face irreversible free-radical threat.

We suggest that secondary plant metabolites will have their impact on the insecticide development programme of the Third World countries and surely alpha-terthieryl will emerge as a potent larvicide in the next century.

Received 8 May 2001: revised accepted 30 June 2001