Indian rice varieties released in countries around the world

G. S. V. Prasad, U. Prasadarao, N. Shobha Rani, L. V. S. Rao, I. C. Pasalu and K. Muralidharan*

In India, rice is grown under diverse ecosystems as rainfed uplands, rainfed shallow, semideep and deepwater lowlands, irrigated lands and hills. These are the major rice ecosystems found the world over. The model cooperative all-India coordinated rice-testing programme evolved at Hyderabad during 1965 helped the country to reach and sustain self-sufficiency in rice from 1977. The International Rice Research Institute at the Philippines built a global rice-testing programme in 1975 based on the successful AICRIP model. Other countries have also benefited through release and commercial exploitation of India-bred rice varieties.

IN India rice is cultivated in 42 million hectares (mha) under four major ecosystems, viz. irrigated (19 mha), rainfed lowland (14 mha), flood prone (3 mha) and rainfed upland (6 mha) ecosystems. Rice ecosystems in India represent 24% of irrigated areas, 34% of rainfed lowlands, 26% of flood-prone areas and 37% of rainfed uplands cultivated to rice in the entire world. No other country in the world has such diversity in rice ecosystems. Therefore, Indian rice research programme is the principal moving force in the world.

All-India Coordinated Rice Improvement Project (AICRIP) was started in 1965 at Hyderabad under Indian Council of Agricultural Research to usher in green revolution. The coordinated variety improvement and testing programme covers 52 cooperating centres in addition to 51 voluntary centres in different agro-climate regions in the country. This programme helps to exchange and evaluate breeding material quickly across the country.

The aim of AICRIP programme is to improve yield-ability, increase efficiency in the use of external inputs and incorporate resistance to biotic and abiotic stresses. The multilocalational testing of breeding stock developed at different research centres is organized by AICRIP. The evaluation of genotype x environment interactions in different ecosystems has been the rationale for the multidisciplinary approach to rice improvement research. Depending on genotype sensitivity to photoperiod, three to four years are needed to identify a promising superior genotype based on data from the

The authors are in the Directorate of Rice Research, Hyderabad 500 030, India

*For correspondence. (e-mail: k_muralidharan@usa.net)
multilocational tests. In the first year, the newly evolved genotypes are tested in replicated local yield trials. The selected breeding lines from these experiments are included in the zonal coordinated trials called initial variety trial (or initial evaluation trial). Simultaneously, these breeding lines are also put to screening nursery tests for identifying their reaction to pests and diseases. The breeding lines that yield consistently well for two years are grouped to form advanced variety trials (or uniform variety trials) and tested for two more seasons. Agronomic data on these elite breeding lines are also generated during this period. After a careful scrutiny by different research centres, selected breeding lines are evaluated in on-farm trials for obtaining reaction of farmers and extension workers on the yield performance and acceptability. Considering yield records, agronomic data and the reaction to pests and diseases, candidate breeding lines are identified for release as varieties at the annual workshop by the coordinating unit. These are then named and released as new high-yielding varieties to cultivators by the state or central variety release committee.

Indica rice varieties are well known to produce high biomass. They also possess immense variations for panicle weight and grain number per panicle. But the traditional indica cultivars are prone to lodging and consequent yield losses. During the post-world war period there was a shortfall in rice availability as Asia faced the problem of increasing population. The importance of breeding for insensitivity to photoperiod was understood in early 1960s in the context of adaptation to a wider range of ecological situations. By the identification and introduction of DGWG gene into rice varieties, non-lodging dwarf plant type was achieved. This plant type provided a dramatic improvement in yields harvested by the farmers. With introduction of new seeds of photoperiod-insensitive dwarf rice varieties like IR 8 in 1966 and Jaya in 1967, along with other inputs, fertilizer and water, production increased rapidly. The amount of nitrogen applied per hectare in south and south-east Asia more than doubled in the next five years. A perceptible shift occurred in many countries from a growth dependent upon expansion in land area to a growth based on increased yield per hectare. Initially variability in physical environment was the major reason for the difference in the acceptance rates for new varieties not only between countries, but also within countries. Within a decade, rapid strides were made in the development of stable, and widely adaptable varieties that were insulated against biotic and abiotic stresses. So far, the AICRIP programme has aided actively in the development and release of 632 rice varieties. With such massive efforts, India has reached sustained self-sufficiency in rice. This attracted international attention as it called for sharing and exploitation. The situation was ripe to establish effective linkages for

### Table 1. Rice varieties developed in India and released in countries around the world

<table>
<thead>
<tr>
<th>Country where released</th>
<th>Number</th>
<th>Name/designation</th>
<th>Cross</th>
<th>Source</th>
<th>Released region</th>
<th>Name given</th>
<th>Year released</th>
<th>Ecosystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afghanistan</td>
<td>IET 1415</td>
<td>CR 44-11</td>
<td>TKM 6/IR 8</td>
<td>CRRI</td>
<td>South Asia</td>
<td>1975</td>
<td>Irrigated</td>
<td></td>
</tr>
<tr>
<td>Afghanistan</td>
<td>IET 355</td>
<td>Caavery</td>
<td>TKM 6/TN1</td>
<td>DRR</td>
<td>South Asia</td>
<td>1975</td>
<td>Upland</td>
<td></td>
</tr>
<tr>
<td>Afghanistan</td>
<td>IET 953</td>
<td>Padma</td>
<td>T141/TN1</td>
<td>CRRI</td>
<td>South Asia</td>
<td>1975</td>
<td>Irrigated</td>
<td></td>
</tr>
<tr>
<td>Benin</td>
<td>–</td>
<td>CO 38</td>
<td>IR 8/CO 25</td>
<td>TNAU</td>
<td>Sub-Saharan Africa</td>
<td>–</td>
<td>–</td>
<td>Irrigated</td>
</tr>
<tr>
<td>Benin</td>
<td>–</td>
<td>RAU 4072-13</td>
<td>IR 1833-208-6-3/Mahsuri</td>
<td>RAU</td>
<td>Sub-Saharan Africa</td>
<td>RAU 407 1991</td>
<td>Upland</td>
<td></td>
</tr>
<tr>
<td>Bhutan</td>
<td>–</td>
<td>Barkat</td>
<td>Shines/China 971</td>
<td>SKUA/S&amp;T</td>
<td>South Asia</td>
<td>Barkat 1992</td>
<td>Irrigated</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>IET 2881</td>
<td>Seshu</td>
<td>IR 24/T141</td>
<td>DRR</td>
<td>Latin America and The Caribbean islands</td>
<td>1984</td>
<td>Upland</td>
<td></td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>IET 2885</td>
<td>Vikram</td>
<td>IR 8/Siam 29</td>
<td>DRR</td>
<td>Sub-Saharan Africa</td>
<td>1979</td>
<td>Irrigated</td>
<td></td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>IET 1996</td>
<td>RP 4-2</td>
<td>T90/IR 8</td>
<td>DRR</td>
<td>Sub-Saharan Africa</td>
<td>1985</td>
<td>Irrigated</td>
<td></td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>IET 1879</td>
<td>Vijaya</td>
<td>T 90/IR 8</td>
<td>CRRI</td>
<td>Sub-Saharan Africa</td>
<td>1997</td>
<td>Rainfed</td>
<td></td>
</tr>
<tr>
<td>Burundi</td>
<td>–</td>
<td>Savithri</td>
<td>Pankaj/Jagannath</td>
<td>CRRI</td>
<td>Sub-Saharan Africa</td>
<td>–</td>
<td>–</td>
<td>Irrigated</td>
</tr>
<tr>
<td>Cambodia</td>
<td>IET 7435</td>
<td>OR 142-99</td>
<td>Pankaj/Sigadis</td>
<td>OUAT</td>
<td>Sub-Saharan Africa</td>
<td>South East Asia</td>
<td>1992</td>
<td>Rainfed, lowland</td>
</tr>
<tr>
<td>Cameroon</td>
<td>IET 723</td>
<td>Jaya</td>
<td>TN1/T 141</td>
<td>DRR</td>
<td>Sub-Saharan Africa</td>
<td>1977</td>
<td>Irrigated</td>
<td></td>
</tr>
<tr>
<td>China P.R.</td>
<td>–</td>
<td>M 114</td>
<td>Mahsuri mutant 3628</td>
<td>KAU</td>
<td>East Asia</td>
<td>8085</td>
<td>1981</td>
<td>Irrigated</td>
</tr>
<tr>
<td>Cote d’Ivoire (Ivory Coast)</td>
<td>IET 723</td>
<td>Jaya</td>
<td>TN1/T 141</td>
<td>DRR</td>
<td>Sub-Saharan Africa</td>
<td>–</td>
<td>–</td>
<td>Irrigated</td>
</tr>
<tr>
<td>Dominican</td>
<td>–</td>
<td>IR 2153-276-1-10-PR 509</td>
<td>IR 1541-102-6-3/IR</td>
<td>PAU</td>
<td>Latin America and The Caribbean islands</td>
<td>Juma 62</td>
<td>1986</td>
<td>Irrigated</td>
</tr>
<tr>
<td>Republic</td>
<td>IET 2885</td>
<td>Vikram</td>
<td>IR 8 / Siam 29</td>
<td>DRR</td>
<td>Sub-Saharan Africa</td>
<td>Afife/ GR 17</td>
<td>1982</td>
<td>Irrigated</td>
</tr>
<tr>
<td>Ghana</td>
<td>IET 1990</td>
<td>Sona</td>
<td>GEB 24/TN1</td>
<td>DRR</td>
<td>West Asia &amp; North Africa Amol 3</td>
<td>1982</td>
<td>Irrigated</td>
<td></td>
</tr>
</tbody>
</table>

*contd...*
### Table 1 (contd.)

<table>
<thead>
<tr>
<th>Country</th>
<th>IET Code</th>
<th>Accession</th>
<th>Location</th>
<th>Parentage</th>
<th>Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iraq</td>
<td>IET 8113</td>
<td>RP 2095-5-8-31</td>
<td>Vikram/Andrewsali</td>
<td>DRR</td>
<td>Sub-Saharan Africa – Rainfed</td>
</tr>
<tr>
<td>Kenya</td>
<td>IET 6985</td>
<td>AD 9246</td>
<td>ADT 31/AD 198</td>
<td>TNAU</td>
<td>Sub-Saharan Africa – Irrigated</td>
</tr>
<tr>
<td>Kenya</td>
<td>Basmati 217</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Malawi</td>
<td>IET 4094</td>
<td>Kithri</td>
<td>BU 1/CR 115</td>
<td>CRR</td>
<td>Sub-Saharan Africa Senga 1993 Irrigated</td>
</tr>
<tr>
<td>Mali</td>
<td>IET 1444</td>
<td>Rasi</td>
<td>TN1/CO 29</td>
<td>DRR</td>
<td>Sub-Saharan Africa IET 1444 1984 Rainfed</td>
</tr>
<tr>
<td>Mali</td>
<td>IET 723</td>
<td>Jaya</td>
<td>TN1/T 141</td>
<td>DRR</td>
<td>Sub-Saharan Africa – Irrigated</td>
</tr>
<tr>
<td>Mali</td>
<td>IET 1879</td>
<td>Vijaya</td>
<td>T 90/8</td>
<td>CRR</td>
<td>Sub-Saharan Africa – 1978 Irrigated</td>
</tr>
<tr>
<td>Mauritania</td>
<td>IET 723</td>
<td>Jaya</td>
<td>TN1/T 141</td>
<td>DRR</td>
<td>Sub-Saharan Africa – Irrigated</td>
</tr>
<tr>
<td>Myanmar</td>
<td>–</td>
<td>Mahsuri</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nepal</td>
<td>IET 2935</td>
<td>CR 123-23</td>
<td>Dungansali/Jayanti</td>
<td>CRR</td>
<td>South Asia Durga 1978 Upland</td>
</tr>
<tr>
<td>Nepal</td>
<td>IET 1444</td>
<td>Rasi</td>
<td>TN1/CO 29</td>
<td>DRR</td>
<td>South Asia Bidadeswari 1981 Upland</td>
</tr>
<tr>
<td>Nepal</td>
<td>–</td>
<td>K 39-96-1-1-2</td>
<td>CH 1039/IR 580-19-2-3-3</td>
<td>SKUAS&amp;T</td>
<td>South Asia Khumal 3 1982 Irrigated</td>
</tr>
<tr>
<td>Nepal</td>
<td>–</td>
<td>IR 2298-5 PLPB-3-2-1</td>
<td>CICA 4/KULU</td>
<td>PAU</td>
<td>South Asia Himali 1982 Irrigated</td>
</tr>
<tr>
<td>Nepal</td>
<td>–</td>
<td>IR 3941-6 PLPB</td>
<td>CR 126-42-5</td>
<td>IR 2061-213</td>
<td>PAU</td>
</tr>
<tr>
<td>Pakistan</td>
<td>IET 4094</td>
<td>Kithri</td>
<td>BU 1/CR 115</td>
<td>CRR</td>
<td>South Asia DR 82 1984 Irrigated</td>
</tr>
<tr>
<td>Paraguay</td>
<td>IET 4094</td>
<td>Kithri</td>
<td>BU 1/CR 115</td>
<td>CRR</td>
<td>Latin America and the Caribbean islands CEA 1 1989 Irrigated</td>
</tr>
<tr>
<td>Paraguay</td>
<td>IET 5612</td>
<td>R 22-2-10-1</td>
<td>IR 22/Sigadis</td>
<td>KKV</td>
<td>Latin America and the Caribbean islands CEA 3 1989 Irrigated</td>
</tr>
<tr>
<td>Senegal</td>
<td>IET 1444</td>
<td>Rasi</td>
<td>TN1/CO 29</td>
<td>DRR</td>
<td>Sub-Saharan Africa 1981 Upland</td>
</tr>
<tr>
<td>Senegal</td>
<td>IET 723</td>
<td>Jaya</td>
<td>TN1/T 141</td>
<td>DRR</td>
<td>Sub-Saharan Africa Jaya 1986 Irrigated</td>
</tr>
<tr>
<td>Tanzania</td>
<td>IET 4790</td>
<td>BIET 360</td>
<td>IR 8/CH 45</td>
<td>RAU</td>
<td>Sub-Saharan Africa 1986 Upland</td>
</tr>
<tr>
<td>Tanzania</td>
<td>IET 1444</td>
<td>Rasi</td>
<td>TN1/CO 29</td>
<td>DRR</td>
<td>Sub-Saharan Africa Karain 1 1984 Rainfed</td>
</tr>
<tr>
<td>Tanzania</td>
<td>IET 2397</td>
<td>RP 143-4</td>
<td>IR 8/HR 19/8</td>
<td>DRR</td>
<td>Sub-Saharan Africa Karain 1 1984 Rainfed</td>
</tr>
<tr>
<td>Tanzania</td>
<td>IET 360</td>
<td>L 5P23</td>
<td>GEB 24/TN1</td>
<td>CRR</td>
<td>Sub-Saharan Africa – Irrigated</td>
</tr>
<tr>
<td>Tanzania</td>
<td>IET 1891</td>
<td>Sabarmati</td>
<td>TN1/Bas 370/Bas 370</td>
<td>IARI</td>
<td>Sub-Saharan Africa Subamati – Rainfed</td>
</tr>
<tr>
<td>Togo</td>
<td>IET 1444</td>
<td>Rasi</td>
<td>TN1/CO 29</td>
<td>DRR</td>
<td>Sub-Saharan Africa 1978 Upland</td>
</tr>
<tr>
<td>Venezuela</td>
<td>IET 7288</td>
<td>PR 106</td>
<td>IR 8/Peta 5/9</td>
<td>PAU</td>
<td>Latin America and the Caribbean islands Araura 3 1984 Irrigated</td>
</tr>
<tr>
<td>Vietnam</td>
<td>IET 723</td>
<td>Jaya</td>
<td>TN1/T 141</td>
<td>DRR</td>
<td>South-east Asia – Irrigated</td>
</tr>
<tr>
<td>Zambia</td>
<td>IET 7543</td>
<td>RTN 500-5-1</td>
<td>IR 8/RTN 24</td>
<td>KKV</td>
<td>Sub-Saharan Africa – Irrigated</td>
</tr>
</tbody>
</table>

CRRI, Central Rice Research Institute; DRR, Directorate of Rice Research; IARI, Indian Agricultural Research Institute; KAU, Kerala Agricultural University; KKV, Konkan Krishi Vidyapeeth; OUAT, Orissa University of Agriculture and Technology; PAU, Punjab Agricultural University; RAU, Rajendra Agricultural University; SKUAS&T, Sher-e-Kashmir University of Agricultural Sciences and Technology; and TNAU, Tamil Nadu Agricultural University.

collaboration to international rice improvement programmes around the world.

In 1975, International Rice Research Institute (IRRI), the Philippines started a project similar to the AICRIP model called International Rice Testing Programme (IRTP), with India as a major partner. Later IRTP was renamed as International Network for Genetic Evaluation of Rice (INGER). IRRI's INGER programme has led to the exchange of genetic material among researchers working under diverse rice-growing ecologies around the globe. From INGER nurseries, rice varieties that were bred and released in India, have been directly released for commercial exploitation in many countries. Several elite breeding lines generated in India and identified in AICRIP programme have also been used by many countries as donor parents for traits like pest resistance, yield and quality. Through international collaboration, 33 elite breeding lines developed in India have been released as 46 varieties around the world. These varieties and cultures have been released under different names in a few countries. Global adoption of so many varieties of Indian origin gives a true measure of the strength of Indian rice-breeding programme. Further, this also proves the value of AICRIP model – INGER programme as a mechanism for worldwide testing of breeding lines over a wide range of climatic, cultural, soil, pest and disease conditions.

Forty-six Indian varieties have been released by other countries for farmers’ cultivation: 25 in Sub-Saharan Africa, 10 in South Asia, 5 in Latin American and the
Caribbean islands, 3 in South east Asia, 2 in West and North Africa and one variety in East Africa. Utilization of India-bred varieties around the world covered all rice ecosystems: 8 varieties in rainfed upland areas, 6 in rainfed lowlands and 32 in irrigated areas (Table 1).

In general, the Indian rice varieties have consistently produced high and stable yields in the international tests. In most environments, Jaya (IET 723) demonstrated its ability for wide adaptability met within the irrigated ecosystem. In fact, Jaya was released in five different countries for commercial exploitation. Likewise, another stable-yielding, widely adopted, photoinensitive and late-season, water stress-tolerant variety, Rasi, spread across ecosystems in many countries. Rasi (IET 1444) was released for general cultivation in Mali, Nepal, Senegal, Tanzania and Togo. IET 355, IET 2881 and RAU 4072-13 proved their ability to overcome drought stress in fragile rainfed upland ecosystem. Vijaya demonstrated its grain-yielding ability in irrigated ecosystems at Mali, and in rainfed lowlands at Burkina Faso. IET 7435 and IET 2397 recorded high yields at many rainfed shallow lowland test centres across the world. The success of the Indian programme in introducing quality traits from native landraces GEB 24 and Basmati 370 with global acceptance is indicated by the release of Sona, Basmati 217 and Sabarmati. These varieties possess improved quality characteristics such as attractive translucent grains with good texture or aroma. Blast resistance and cold tolerance are the two important traits needed in a variety for its adoption in hill ecosystem. The release of cultivars Durga, Bindeswari, Khumal 3, Himali and Kanchen in Nepal, and Barkat in Bhutan is a testimony to the success achieved in the introduction of such stress-tolerant traits in Indian rice varieties. Due to its ability to produce high yields even at higher ambient temperature at reproductive phase, Kitish was released in Pakistan, Paraguay and Malawi. The Indian varieties that produced stable high yields in the international tests, or those which possessed resistance to stresses or good quality traits found wide acceptance and claimed release in several countries around the world.

The future poses a more challenging task of finding enough rice to feed the ever-increasing population. The targeted global production is 880 million tonnes of unmilled rice by 2020. This increase in rice production must be achieved from less land and with less labour, less water and less pesticides. And it must be sustainable. The demand for rice is expected to grow rapidly over the next two decades, especially in some of the Asian countries: 65% in the Philippines, 56% in Malaysia, 51% in Bangladesh, 46% in India, 45% in Vietnam, 42% in Myanmar and 38% in Indonesia. With a rich and diverse germplasm resource, India must continue to lead in rice improvement programme to sustain self-sufficiency in the future. The AICRIP programme must further be strengthened to aid the exchange and use of rice genetic material generated inside and outside the country. India must also continue to actively support and collaborate with IRRI's programme, so that world population gets sufficient rice to eat.


ACKNOWLEDGEMENTS. We thank the scientists involved in the All-India Coordinated Rice Improvement Project at various centres in various years. We also thank Drs. G. S. Khush, D. V. Seshu and R. C. Chaudhary (IRRI) for providing various details and reports.

Received 14 December 2000; revised accepted 3 February 2001