RESEARCH ARTICLE

Asteroid tetrahedron shape models from spud data

B. Khushalani

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109-2140, USA

Gravitational potentials considering a body to be a
sphere or an ellipsoid appear quite commonly in litera-
ture. To extract science from asteroids, the latter are
treated as point-masses or ellipsoids. A closed form
solution for gravitational potential of a tetrahedral-
shaped body has appeared recently although in geo-
physical context. In this paper, we show how to obtain
a tetrahedral shape model for an asteroid from a spud
model which gives the radius of the asteroid at diffe-
rent locations on the asteroid. For the benefit of read-
ers we give complete and explicit coding to create the
shape model.

AS spacecraft explorations of minor bodies in the solar
system takes momentum, we face a problem of navigation
issues of the spacecrafts at or near these bodies. Gravity
field obtained by assuming spherical or ellipsoidal shape
models for asteroids proves to be inadequate because of
divergence associated with them. One way around this
is to obtain polyhedral gravity field by discretizing the
shape of the asteroid into tetrahedrons which can be later
combined to obtain a coherent polyhedron'.

A latitude—longitude shape model can be created with
the help of either the images from instruments on-board
the spacecraft or earth-based instrument, a so-called spud
(potato) model”.

Given this spud data in the form of a n-row, 3-column
matrix containing latitude, longitude and the radius at that
point, we wish to obtain a tetrahedral shape model for the
asteroid.

Vertex and face numbering

We begin by dividing the 90°S to 90°N latitude range into
finite divisions, each division being latSpacing. And simi-
larly, the 0 to 360° longitude range, each division being
lonSpacing. As an example, let latSpacing and lonSpacing
each be 10°. This is shown in Figure 1.

We start by numbering the 90°S vertex as 1, followed
by 80°S, 0° lon vertex as 2, 80°S, 10° lon vertex as 3 and
so on around the longitude ring. Each longitude ring then
contains lonDivisions number of vertices where

lonDivisions = 360/lonSpacing.

e-mail: bharat@engin.umich.edu

1578

Similarly,
latDivisions = (180/latSpacing) + 1.

For the surface normals to point outward, we now assign
numbers to the faces, each face containing a 1 x 3 vector
of vertices which go counter-clockwise as seen from out-
side the asteroid. The first face will connect v2, v3, vl;
the second face v3, v4, vl and so on, where v1 is the sole
vertex at the 90°S latitude. This is shown in Figure 1 for

The total number of faces between 90 S and 80 S (and
90N and 80 N) is lonDivisions. And that between any
other pair of latitudes is two times lonDivisions. The
explicit formulae then become,

total faces = (2 % lonDivisions) x (latDivisions — 2),

total vertices = lonDivisions x (latDivisions — 2) + 2.

80 S-70 S faces, for example, can then be arranged as

face 1: V1 70¥230" 150
face 2: V1 70V270V 280
face 3: V270V3 30" 250
face 4: V570370V 380

80S
90 S
f3,

80S < s 708

205 v38 v39
350 ¢ 10 20 vl
Latitudes And Longitudes
v4
vl v2 v3
Faces
v2 v3 v4
Vertices
Figure 1.

CURRENT SCIENCE, VOL. 79, NO. 11, 10 DECEMBER 2000

RESEARCH ARTICLE

face 69: V3570V 36,80V 35,80

face 70: V3570V36,70V 36,50

face 71 V36!70V1’80V36,80

face 72: Vig0V1,70V1 805
around the ring with (2 »x lonDivisions) number of faces.
Here, V) 4 is the O lon vertex at lat 70°, ¥, g is the 10 lon
vertex at lat 80°, etc.

While for the two ends, the faces joining 90 S to 80 S

and 90 N to 80 N are

face 1: V| 505V 2805V 90s

face 2: V3 305¥3,308Vo0s

face 36: V363051 308V o0s »
and
face 1: VoonV2 308V 1 808

face 2: VoonVs 308V 2,808

face 36: VoonV1 308V 36,308 »

respectively.
Removing the 90 S and 90 N vertices, the vertex matrix
can be written

Vigos Vas0s'* Vienbiv,s0s
Vizos Vagos - Vienbiv,708
Vigson Vason ' Vienbiv,son

The 10° spacing 17 x 37 augmented vertex matrix is,

578 579.-- 613 578

Explicit coding to generate the vertex number matrix then
can be,

for i = 1: latDivisions — 2
for j = 1: lonDivisions
vertexNumberMatrix(i, j) = (lonDivisions*
(=1)+2+ (-1
end
vertexNumberMatrix(i, j + 1) =
vertexNumberMatrix(i, 1);
end

CURRENT SCIENCE, VOL. 79, NO. 11, 10 DECEMBER 2000

Generating face file

To generate the faces from the vertex number matrix, we
move inside this matrix as in Figure 2.

If we start with the first face, the face file containing
1 x 3 vector with connecting vertices as its elements,
takes the form

for j = 1: lonDivisions
faceFile(faceNumber, 1) = vertexNumberMatrix(1, j);
faceFile(faceNumber, 2) = vertexNumberMatrix(1, j + 1);
faceFile(faceNumber, 3) = 1;
faceNumber = faceNumber + 1;

end

for i = 1: latDivisions — 3
for j = 1: lonDivisions
faceFile(faceNumber, 1) = vertexNumberMatrix(1, j);
faceFile(faceNumber, 2) = vertexNumberMatrix(1, j + 1);
faceFile(faceNumber, 3) = vertexNumberMatrix(1, j);

faceFile(faceNumber+1,1)=vertexNumberMatrix(i + 1, j);
faceFile(faceNumber + 1, 2)=
vertexNumberMatrix(i + 1,7 + 1);
faceFile(faceNumber+1,3) = vertexNumberMatrix (i, j+ 1);
faceNumber = faceNumber + 2;
end
end

for j = 1: lonDivisions
faceFile(faceNumber, 1) =
lonDivisions*(latDivisions — 2) + 2;
faceFile(faceNumber, 2) =
vertexNumberMatrix(latDivisions — 2j + 1);
faceFile(faceNumber, 3) =
vertexNumberMatrix(latDivisions — 2j);

faceNumber = faceNumber + 1;
end

This completes the inventory of faces.

Generating vertex file

Spud data’, for an equal 10° lat-lon spacing takes the
format as shown in Table 1. From our vertex definitions,

V1,808

7

V1,708

V2,80 S

V2,70 S

Figure 2.

1579

RESEARCH ARTICLE

Table 1
Lat Lon Rad
-90 0 r1

-90 10 ¥l

~90 360 .
- 80 0 rz
~80 10 "

~80 360 s

90 0

Flast vertex
9:0 360 Flast vertex
Table 2
Lat Lon Vertex number

- 90 0 1
- 9:0 360 1
- 80 0 2
- 8:0 350 37
- 80 360 2
9?0 0 614
9:0 360 614

we can now put the vertex numbers corresponding to each
(lat, lon) pair as shown in Table 2. Each vertex in Table 2
is again a 1 x 3 vector containing its x, y, z components
calculated from the spud table as

V, = r cos(lat) cos(lon)
V, = r cos(lat) sin(lon)
V. = r sin(lat).
We thus obtain the vertex file containing the vertex

number and the three components of the corresponding
vertices.

Figure 3.

Asteroid Bhishma tetrahedrally discretized.

Generating shape models

Availability of the spud data for a couple of asteroids now
allows us to obtain a precision-controlled shape model for
that asteroid. This can be used in our further analysis re-
lating to, for example, evolution of ejecta trajectories
from these asteroids.

Figure 3 shows the discretized shape model of asteroid
Bhishma. We see from the figure that a commonly
assumed ellipsoidal shape of 33 x 13 x 13 km is far from
the true shape for this asteroid. In fact, clearly visible now
is the punch in front of the asteroid and a hump behind it.
Models assuming the ellipsoidal shape will not give true
representation of Bhishma and a gravitational potential
obtained by taking it to be a sphere or a point-mass will
be outrightly wrong.

1. Scheeres, D. J., Khushalani, B. and Werner, R., Asteroids, Comets
and Meteors Conference, Cornell University, Ithaca, 1999.

2. http://loring.jhuapl.edu/NEAR/SDC/ScienceTeamProducts/MSI/

Mortenson, M., Geometric Modeling, Wiley, New York, 1997.

4. Gurumoorthy, B., Class notes for the course on Geometric Model-
ling, Indian Institute of Science, Bangalore, India.

(78]

Received 12 April 2000; accepted 30 August 2000

1580

CURRENT SCIENCE, VOL. 79, NO. 11, 10 DECEMBER 2000

