Reproductive behaviour and genetic variability in geographically isolated populations of *Rhododendron arboreum* (Ericaceae)

Ajay Jain*, M. K. Pandit, S. Elahi†, Arvind Jain‡, A. Bhaskar and Virendra Kumar

Centre for Interdisciplinary Studies for Mountain and Hill Environment, University of Delhi South Campus, Benito Jaurez Road, New Delhi 110 021, India

†Present address: Division of Floriculture and Landscaping, Indian Agricultural Research Institute, New Delhi 110 012, India

‡Laboratory of Cellular and Molecular Cytogenetics, Department of Botany, University of Delhi, Delhi 110 007, India

*Correspondence. (e-mail: cismh@hotmaill.com)

*For correspondence. (e-mail: cismh@hotmaill.com)

**For correspondence. (e-mail: cismh@hotmaill.com)}
Genomic DNA was extracted from young leaf tissue following the procedure described by Saghai-Marof et al. Synthetic decamer primers from Operon Technologies Inc., Alameda, Calif. (Kits P, Q and W) were used for amplification reactions using the standard protocol of Williams et al. with minor modifications as described by Jain et al. Results of the RAPD assay represented a consensus of two replicates. For each individual, only reproducible and unambiguously scorable bands in both the replicates were considered. Data were analysed using NTSYS-pc, version 1.50 (Exeter Software, NY). Pair-wise comparisons of individuals, based on both unique and shared amplification products were used for estimating genetic similarity by employing Jaccard’s coefficient of similarity. Cluster analyses were conducted on similarity estimates using the unweighted pair-group method with arithmetic averages (UPGMA) and the resulting clusters were expressed as a dendrogram representing genetic relationships among individuals of geographically isolated populations. Genetic distance (GD) was calculated as: GD = 1 - G5 (genetic similarity).

Field-pollinations were performed at Mussorie and Mount Koilmund during February–March (1995–1997) to determine the reproductive behaviour of temperate and tropical rhododendron populations. Two sets of experiments were conducted. In the first set, flowers were merely tagged and allowed to pollinate naturally. In the second set, manual pollinations were carried out for: (a) selfing, using pollen from the same flower, (b) cross-pollinations, using pollen from different individual separated by a minimum distance of 100 m, and (c) reciprocal crosses between temperate and tropical populations. A total of 215–240 pollinations were carried out for each set of experiment with a minimum of 25 pollinations on a single tree. For reciprocal crosses, pollen samples collected from different sites were stored desiccated over dry silica gel. Fluorochromatic reaction (FCR) test was performed to determine the viability of the pollen samples before using them for field pollinations. Following different pollination treatments, fruits were harvested after about four to six months, transferred to the butter paper bags and allowed to dehisce at room temperature (28 ± 2°C). Seeds obtained for each set of experiments were stored desiccated at 4°C. For calculating seed/ovule ratio, five to six mature ovaries and fruits were collected from each of the nine trees of the temperate and tropical populations used for manual pollinations. This ratio is represented by the mean number of ovules and seeds harvested from 45 to 50 ovaries and fruits, respectively. Per cent fruit-set and seed/ovule ratio obtained through different manual pollination treatments were compared with those achieved through natural pollinations.

Seed germination tests were conducted using 10 replicates of 50 seeds each for different treatments. Seeds were soaked for 2–3 h in sterile distilled water and plated in 9 cm petri plates lined with two layers of moistened filter paper. The plated seed samples were given chilling treatment at 4 ± 2°C for 24 h. For germination, seeds were kept in sterile growth chamber (16 h day, 20 ± 2°C). The filter papers in the petri plates were kept moistened continuously with sterile distilled water during the entire period of the experiment. A seed was treated as germinated when its radicle protruded through the seed coat and attained at least twice the length of the seed.

To determine, if there are differences within and between temperate and tropical populations in the pollen adherence and germination of self- and cross-pollen on stigmas, 18 pollinated pistils each from temperate and tropical populations (two pistils/tree) for each set of experiment were fixed in Carnoy’s fixative, one, two and seven days after pollinations. Fixed pistils were cleared overnight in 4 N NaOH and mounted in decolourised aniline blue with one drop of 50 per cent glycerine. The preparations were observed under fluorescence microscope (Nikon Optiphot) for in vivo pollen germination and pollen tube growth. The micropylar ends of the ovules were examined for the entry of pollen tubes.

Duncan’s new multiple range test was employed to make comparisons among different values (seed/ovule ratio, per cent fruit-set, and per cent seed germination) obtained through natural and manual pollination treatments in R. arboresum ssp. arboresum and ssp. nilagiricum.

The levels of polymorphism within and across the sampled individuals representing populations of ssp. arboresum and ssp. nilagiricum were detected by using randomly selected 30 decamer primers. Table 2 gives the details of the total number of amplification and polymorphic products generated, per cent polymorphism observed and mean number of polymorphic products/primer within and across the individuals of tropical and temperate rhododendron populations. The 30 primers used for the RAPD assay differed greatly in their efficacy in generating both the number and size of the amplified products which revealed polymorphism. The number of scorable bands amplified by each primer varied from 5 (OPW-4) to 16 (OPP-8), ranging in size from about 0.3 to less than 3.0 kb. No correlation was observed between the PCR yield of detectable amplified products and the GC content of a primer. Primer OPQ-7 having 70 per cent GC content produced 12 amplification products, while primer OPP-6 having similar GC content, generated only 7 amplification

<p>| Table 2. Genetic polymorphism within and across R. arboresum ssp. arboresum (Ra) and ssp. nilagiricum (Rn) revealed by RAPD assay using 30 decamer primers |
|-----------------|-----------------|----------------|</p>
<table>
<thead>
<tr>
<th>No. of amplification products</th>
<th>Polymorphic products</th>
<th>Mean no. of polymorphic products/primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Among Ra</td>
<td>238</td>
<td>121</td>
</tr>
<tr>
<td>Among Rn</td>
<td>217</td>
<td>74</td>
</tr>
<tr>
<td>Across Ra and Rn</td>
<td>290</td>
<td>165</td>
</tr>
</tbody>
</table>

1378 CURRENT SCIENCE, VOL. 79, NO. 9, 10 NOVEMBER 2000
products. All the primers tested revealed polymorphism across individuals which varied from 20 per cent (OPP-4) to 90.66 per cent (OPP-1 and OPQ-10). Out of 30 primers tested, 22 revealed higher genetic variability among the individuals from Himalaya, compared to those from the tropical populations. The only exception was the primer (OPQ-5) which generated higher per cent polymorphism across the individuals from Nilgiri Hills. Seven primers did not show any variation in per cent polymorphism across the individuals of both the temperate and tropical populations. Out of 290 amplification products, 50.84 per cent were polymorphic among ssp. *arboreum* individuals, while only 34.10 per cent were polymorphic among individuals of ssp. *nilagiricum* with an average of 4.0 and 3.1 polymorphic products/primer respectively.

For the estimation of genetic distance (GD), use of at least 50 different polymorphic loci has been recommended. In the present study, 165 unambiguous RAPDs were used to construct an integrated dendrogram (Figure 1). All the nine individuals from the Nilgiri Hills were grouped in one cluster while, individuals belonging to Himalaya formed another cluster. Both the clusters were quite distinct with a GD estimate of 0.40. Four individuals from Nilgiri Hills, i.e. N1c, N2c, N3b and N3c exhibited a minimum GD of 0.13 amongst them but these individuals could still be differentiated from each other by 8 primers out of 30 tested. Among all the tropical individuals, N1b exhibited maximum GD of 0.18. Generally, the GD estimates across the individuals from Nilgiri Hills were lower than those of the individuals from Himalaya which exhibited extensive genetic variability not only between the individuals from different sampling sites but also amongst them. The GD estimates varied from 0.20 for the most closely related temperate individuals, i.e. M3b and M3c to 0.28 for the most distantly related M1b individual.

FCR scores of all the pollen samples, used for manual pollinations, averaged between 75 and 80 per cent (data not shown). The number of pollen grains adhering to self- and cross-pollinated stigmas did not differ significantly among pollination treatments of individuals from temperate and tropical regions. Similarly, the percentage of pollen grains that had germinated (averaged 50–60 per cent) on stigmas showed a similar trend for different pollination treatments. In all the treatments, one to three pollen tubes were observed from each tetrad, showing profuse germination on the stigmas. These tubes could be traced up to the base of the stigmatic region 24 h after pollination. Two days after different pollination treatments, a large number of pollen tubes traversed from half to 2/3rd lengths of the styles of which a few could be traced down in the ovaries after seven days. Though pollen tube growth rates varied, they did not show any correlation with the type of pollination treatments.

Table 3 presents the details of seed/ovule ratio, per cent fruit-set and per cent seed germination obtained through manual and natural pollinations. The notable difference observed in the reproductive behaviour of temperate and tropical rhododendrons was in the number of ovules/ovary with the former characterized by a significantly higher number (average 1030) when compared with the latter (average 700). However, differences in values of seed/ovule ratio and per cent fruit-set between ssp. *arboreum* and ssp. *nilagiricum* were statistically insignificant ($P < 0.05$). Similarly, the differences in values of seed/ovule ratio, per cent fruit-set and per cent seed germination between natural and manual pollinations in ssp. *arboreum* and ssp. *nilagiricum* were statistically insignificant ($P < 0.05$). Even different pollination treatments (self- and cross-pollinations and reciprocal crosses) in temperate and tropical populations did not show any significant effect on seed/ovule ratio, per cent fruit-set and per cent seed germination. However, irrespective of the pollination treatment, significantly low per cent seed germination.
(P < 0.05) was observed when the female parent was an individual from tropical rhododendron population.

F1 hybrids obtained from crossing tropical and temperate rhododendrons were also analysed by RAPD assay to confirm their hybrid nature. Out of the five primers tested, three (OPW-11, OPW-12 and OPW-15) generated amplification products which were specific to both the parents. Unique amplification products, not present in either of the parents, were not detected in the hybrids with any of the primers tested. Collectively, results from various pollination treatments suggest that temperate and tropical rhododendron populations are self- and cross-compatible and indicated lack of crossability barriers between geographically disjunct populations.

Many studies have reported a significant variation in the levels of genetic polymorphism in geographically isolated populations which has been largely attributed to the interplay of their breeding behaviours and population dynamics. Earlier reports on disjunct populations of *R. arboreum* found in the Indian subcontinent focused mainly on their phyogeographical distribution. In the present investigations we observed that despite the geographical isolation of populations of temperate and tropical regions, they were still reproductively compatible, which is in agreement with similar reports on several other rhododendron species. Only in a few rhododendron species, i.e., *R. ellipticum, R. championiae* and *R. anamienese*, self-incompatibility has been reported as a post-zygotic mechanism. The study indicated that neither pollen availability nor pollination mechanisms limited seed/ovule ratios and fruit-set in these populations. Self- and out-crossing nature in temperate and tropical rhododendron populations suggests complex evolutionary responses to the selective forces influencing plant fitness.

Wyatt has suggested that in isolated populations, self-fertilizing individuals may be at a selective advantage if reproductive success by outcrossing is restricted because of inadequate cross-pollination. In many plant species, extensive genetic diversity has been correlated with higher outcrossing rates while, self-compatible populations with restricted geographical distribution favouring self-pollination has been considered responsible for lower levels of genetic variation. Barrett and Husband also reported lesser genetic polymorphism in *Eichhornia paniculata* populations isolated from the main range which has been attributed to an apparent shift from predominant outbreeding in continental populations to inbreeding in disjunct populations. These studies and the present investigations suggest that the low level of genetic variability in isolated populations of tropical rhododendron could be attributed to their restricted distribution and its consequent effect on their breeding behaviour. It is quite likely that populations of tropical rhododendron favour self-pollination to ensure some reproduction in the relative absence of potential mates.

Restricted geographical distribution and low levels of genetic polymorphism in tropical rhododendron populations do indicate that these populations have developed characteristics akin to colonizing plant species which got separated from the main genetic stock (see also Barrett and Shore). Pandit and Babu have reported that facultative inbreeding in plant populations with small sizes and narrow niche width are susceptible to extinctions through environmental perturbations and anthropogenic pressures. On the basis of morphological and cytogenetical studies on such spatio-temporally isolated populations of rhododendron and some other Himalayan genera found in the hills of south India, Kumar suggested that these populations could be representing the remnants of the Himalayan vegetation driven down south, during the recent glacial epoch, where they evolved independently in the changed environmental conditions and different diurnal
rhythms. In view of these previous studies and the present investigations, the in situ conservation of the tropical rhododendron population assumes greater significance.

The higher levels of genetic variation found in ssp. arboresum make the Himalayan populations an important reservoir of potentially useful genes which could be used for breeding with them and with reproductively compatible counterparts in Nilgiri Hills showing low levels of genetic variability. In crop plants, hybrids showing heterosis are usually developed from parental lines which are diverse in genetic relatedness, geographic origin and ecotypes. This is important from conservation and management perspective, as breeding of temperate and tropical rhododendron populations would widen their genetic base and possibly extend the ecological niche of the hybrid rhododendrons. The populations of tropical rhododendron should also be conserved in situ for the preservation of the species genetic resources by allowing periodic mixing of alleles with adaptive significance.

23. Kumar, V., Ph D thesis University of Delhi, Delhi, 1969.

ACKNOWLEDGEMENT. This research was supported by a grant from the Ministry of Environment & Forests, Government of India.

Received 7 June 2000; revised accepted 2 September 2000

Biodegradation of cyclodiene insecticide endosulfan by Mucor thermo-hyalospora MTCC 1384

Environmental Studies Unit, National Institute of Advanced Studies, Indian Institute of Science Campus, Bangalore 560 012, India

*Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Mumbai 400 085, India

Endosulfan, a chlorinated cyclodiene insecticide, is of environmental concern because of its apparent persistence and toxicity to many non-target organisms. The fungus, Mucor thermo-hyalospora MTCC 1384 was found to bring about transformation of endosulfan molecules. The identification of endosulfan metabolites by thin layer chromatography, gas liquid chromatography using electron capture detector, 1H nuclear magnetic resonance, mass spectrometry and infrared spectra revealed the formation of a major non-toxic metabolite, endosulfan diol and also production of insignificant amount of endosulfan sulfate. This indicates that the fungus is involved in both oxidative and hydrolytic pathways for degradation of this compound.

ENDOSULFAN (1,2,3,4,7,7-hexachlorobicyclo-2,2,1-heptene-2,3-bis-hydroxy methane-5,6 sulfite) is a broad spectrum cyclodiene insecticide. It is used extensively throughout the world to control the insect pests of a wide range of crops including cereals, tea, coffee, cotton, fruits, oil seeds and vegetables. The technical endosulfan is a mixture of two stereoisomers, i.e. alpha- and beta-endosulfan (Figure 1a and b) in the ratio of 7:3. Endosulfan is of great concern because of its persistence and extreme

1 For correspondence. (e-mail: pks@niis.isscernet.in)
rhythms. In view of these previous studies and the present investigations, the in situ conservation of the tropical rhododendron population assumes greater significance.

The higher levels of genetic variation found in ssp. arboresum make the Himalayan populations an important reservoir of potentially useful genes which could be used for breeding with them for their reproductively compatible counterparts in Nilgiri Hills showing low levels of genetic variability. In crop plants, hybrids showing heterosis are usually developed from parental lines which are diverse in genetic relatedness, geographic origin and ecotypes. This is important from conservation and management perspective, as breeding of temperate and tropical rhododendron populations would widen their genetic base and possibly extend the ecological niche of the hybrid rhododendrons. The populations of tropical rhododendron should also be conserved in situ for the preservation of the species genetic resources by allowing periodic mixing of alleles with adaptive significance.

23. Kumar, V., Ph D thesis University of Delhi, Delhi, 1969.

ACKNOWLEDGEMENT. This research was supported by a grant from the Ministry of Environment & Forests, Government of India.

Received 7 June 2000; revised accepted 2 September 2000

Biodegradation of cyclodiene insecticide endosulfan by Mucor thermo- hyalospora MTCC 1384

P. K. Shetty, Jharna Mitra*, N. B. K. Murthy*, K. K. Namitha, K. N. Savitha and K. Raghu*

Environmental Studies Unit, National Institute of Advanced Studies, Indian Institute of Science Campus, Bangalore 560 012, India.

*National Agriculture and Biotechnology Division, Bhabha Atomic Research Center, Mumbai 400 085, India

Endosulfan, a chlorinated cyclodiene insecticide, is of environmental concern because of its apparent persistence and toxicity to many non-target organisms. The fungus, Mucor thermo-hyalospora MTCC 1384 was found to bring about transformation of endosulfan molecules. The identification of endosulfan metabolites by thin layer chromatography, gas liquid chromatography using electron capture detector, 1H nuclear magnetic resonance, mass spectrometry and infrared spectra revealed the formation of a major non-toxic metabolite, endosulfan diol and also production of insignificant amount of endosulfan sulfate. This indicates that the fungus is involved in both oxidative and hydrolytic pathways for degradation of this compound.

ENDOSULFAN (1,2,3,4,7,7-hexachlorobicyclo-2,2,1-heptene-2,3-bis-hydroxy methane-5,6-sulfite) is a broad spectrum cyclodiene insecticide. It is used extensively throughout the world to control the insect pests of a wide range of crops including cereals, tea, coffee, cotton, fruits, oil seeds and vegetables. The technical endosulfan is a mixture of two stereoisomers, i.e. alpha- and beta-endosulfan (Figure 1a and b) in the ratio of 7:3. Endosulfan is of great concern because of its persistence and extreme

1For correspondence. (e-mail: pks@nias.iisc.ernet.in)