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This paper discusses the role of hydrodynamic sta-
bility theory in understanding wall bounded turbu-
lent flows. Work in this area was pioneered by
Malkus, followed by Reynolds and Tiederman and
Reynolds and Hussain. The experimental results,
and theoretical cum computational results of Rey-
nolds and Hussain, were significant in many ways.
Mainly, they highlighted the behaviour of organized
disturbances introduced into the flow field. However,
no conclusions could be reached, one way or other,
regarding a definite connection between hydrody-
namic instability and wall turbulence. More recently,
and over the past few years, we have improved upon
the theoretical analysis of Reynolds and Hussain and
have also done some experiments. We are now able
to conclude much more positively that organized dis-
turbances and hydrodynamic instability modes may
have a very definite connection with wall turbulence.
Here we present brief reviews of the past works of
others and mainly summarize our work and discuss
some of our recent findings.

Introduction

Hydrodynamic stability theory, and several of the theo-
retical and numerical results based on this theory, have
been a fascinating subject of study over the past several
decades. These results, and the experiments inspired by
them, have led to virtually the entire body of knowledge
that exists today on laminar to turbulent transition.

In a relatively limited context, though not any less
significant than the topic of laminar-turbulent transi-
tion, the question has been asked as to whether or not
there is any connection between Aydrodynamic instabil-
ity and actual turbulence itself. The answers obtained in
the past have been fairly mixed, but the work of the
present authors over the past few years seems at least to
keep the question alive. Let us take a brief look at the
past work on this subject.

One very significant statement that can be made is
that hydrodynamic stability theory does indeed have a
strong presence in free turbulent shear flows. In fact the
dominant coherent structure in free turbulent shear flow
is the inviscid instability of the (turbulent) mean- velocity
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profile, which is inflectional in the cases of free turbulent
shear flows. Amongst a number of results confirming this,
the work of Gaster et al.' on the turbulent mixing layer is
a good example. There is also a comprehensive review on
stability and free turbulent shear flows by Liv?, and a
more recent overview by Roshko’. Where this question
remains ambivalent however, is in wall-turbulent flows.

The question of a connection between stability theory
and turbulent shear flow was first raised by Landau*
based on a non-linear stability model. Whilst his work
did not prove to be a suitable model for turbulence, his
equation for non-linear growth found many applications
in the field of instability and transition. The next work
of great conceptual importance is that of Malkus’,
wherein a theory of turbulence was developed based on
the concept, of marginal stability. According to this
concept, it was proposed that if the mean velocity pro-
file typical of wall bounded turbulent flows is used in
the solution of the classical Orr-Sommerfeld equation,
then the profile would prove to be marginally or neu-
trally stable at the existing flow Reynolds number. It is
significant also that Malkus suggested that the molecu-
lar viscosity and not the eddy viscosity be used in the
solution of the Orr-Sommerfeld equation. Malkus's the-
ory was rigorously put to test in an important work by
Reynolds and Tiederman®. This work also gives a lucid
review of Malkus’s theory. Reynolds and Tiederman®
investigated the stability of fully developed turbulent
flow between parallel plates, on the lines of Malkus’s
proposed theory. They used the turbulent mean velocity
profile for channel flow in the solution of the classical
Orr-Sommerfeld equation (using the molecular viscosity
in the equation). The results obtained showed without
doubt that Malkus’s theory as proposed was not valid,
and there was a huge discrepancy between the flow
Reynolds number and the Reynolds number correspond-
ing to neutral or marginal stability, the latter being an
order of magnitude higher than the former. Prabhu (1967,
pers. commun.) also independently obtained the same
result. More recently, Sen et al.” obtained the same result
for the turbulent boundary layer flow problem.

The general question of connection between instabil-
ity and turbulence, with reference to wall bounded tur-
bulent shear flow, went through another round of
serious examination by Reynolds and Hussain®. This
time, abandoning Malkusian precepts, first the basic
equations were derived for a superposed organized dis-
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turbance in turbulent flow. Thereafter an equation for
the stability of this organized disturbance was derived,
which was like an augmented form of the classical Orr-
Sommerfeld equation, but containing extension terms
dependent on the eddy viscosity. Underlying the model
was a closure problem for the Reynolds stress tensor,
which was resolved based on what the authors called the
‘Newtonian eddy’ model. Results of solution of their ex-
tended Orr-Sommerfeld equation, for channel flow, again
yielded damped modes. Nevertheless, the results were
closer to establishing a connection between instability and
turbulent wall flows than was obtained in ref. 6. Experi-
ments performed by Hussain and Reynolds™® showed
some agreement with the theory of Reynolds and Hus-
sain®. Subsequently, some non-linear and three-
dimensional theories were also developed'', but these
are outside the scope of present discussions.

The present authors have re-examined the question of
the connection between instability and wall turbulence,
and have obtained an improved theoretical model for the
problem. Experiments performed also confirm the theo-
retical findings. So far as theory is concerned, the chief
improvement over Reynolds and Hussain® is that a more
realistic and improved model has been chosen for the
turbulent stress tensor, based on the anisotropic model of
Pope'”. This model gives further extensions of the Orr-
Sommerfeld equation over what Reynolds and Hussain®
obtained. The results show that an unstable wall-mode
exists over a wide range of the spatial wave number «.
The instability characteristics scale very well with the
inner variables of turbulent flow, and are virtually inde-
pendent of the outer conditions. Therefore the results are
quite universal for wall turbulence and depend little on
the specific geometry of the problem. Extensive numeri-
cal computation has been done, for the cases of turbulent
boundary-layer, as well as channel flow, to confirm this.
One of the interesting theoretical findings is that the
organized disturbances mimic some of the key features
of wall-turbulence.

Some experiments have also been performed which
are reported in Sen and Veeravalli'. The one-
dimensional energy spectrum, for the turbulent longitu-
dinal velocity, indicates that the range of unstable
wavelengths is well contained within the energy-
containing part of the energy spectrum. More recently,
experiments have also been performed by the present
authors to compare the theoretical and experimental
eigenfunctions, corresponding to the organized distur-
bances. Good confirmation is obtained for the proposed
theory, from the experimental results. These experi-
ments are discussed later on in the present paper.

Thus, the results obtained so far, both theoretical and
experimental, keep alive the question of relevance of
stability theory in understanding turbulence in wall-
bounded turbulent flows.
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Details of past work by the authors may be seen in
refs 13-19.

Theory

The instantaneous velocity vector u; obeys the Navier—
Stokes and continuity equations:
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The velocity and pressure fields are decomposed in tur-
bulent flows by the well-known Reynolds decomposi-
tion; typically,

u =T +uj; p=p+p’ 2)

1

Here ;, p are respectively the mean velocity and pres-
sure, and u’;, p” are the (random) turbulent fluctuations.
If we now superpose an organized (solenoidal) distur-
bance i;, p (with zero mean), the instantaneous veloc-
ity and pressure are respectively given as follows:

wp =+ +up; p=p+p+p. (3a)
The time averages of u;, p are still respectively u,, p,
but, the ensemble (phase locked) averages

(up) =+, {(p)=p+p, (3b)
are different. Moreover, the organized disturbance is
assumed small, or linear, and in addition it obeys the
following:

[y < | @) ] @)

The above assumption (4) restricts the organized distur-
bances to being weaker than what was considered by
Reynolds and Hussain®.

For future clarity some definitions and notations are
introduced: (i) an overbar (-) over any quantity will
imply time average; (ii) the symbols () enclosing a
quantity will imply ensemble average. After some alge-
bra, described in Sen and Veeravalli'®, one is in a posi-
tion to obtain the dynamic equation for the organized
disturbance,

0 i i, o] % or
o, +iI, al+t7j o, =—iai+v a + 2 , (®
ot ox; ox; pox;  ox;0x; Ox;

where 7;is the modulation in the Reynolds stress ten-
sor, given by
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Reynolds and Hussain® have shown that 7~ O(ir;). The
above equations pose a closure problem for the various
forms of the turbulent stresses, including for 7. It will
be instructive to look at simplified physical models and
reasoning to understand the manner of resolution pro-
posed for the closure problems.

At this stage we introduce (twice) the rate of strain
tensor and (twice) the vorticity tensor, respectively s
and wy, as follows:

Qu;  du; | [ ou, du;

Yol ox ;ox

(7a, b)

These expressions are in generic form, implying that if
for example u is replaced by #, then s; and @j; are re-
spectively replaced by 5; and @;.

Attention is restricted to 2-D parallel and near-
parallel mean-flows, specifically the turbulent bound-
ary-layer and channel flow. Definition sketches of the
two problems are shown in Figure 1 a4, b. Note that in
the discussions to follow, the vectors (u;, u,, u3) and (u,
v, w) will be used interchangeably and so also (x, x»,
x3) and (x, y, z). The x coordinate is in the direction of
the free stream, y is in the direction normal to the wall,
and z is the transverse direction. Also we make the
quasi-parallel assumption due to which the mean-
velocity field is given as u =u(y),v=0,and w =0. Fur-
ther, all the mean-velocity gradients, except for 0z/dy,
are either zero, or negligibly small. The turbulence (u”;)-
field is also assumed homogeneous in the z direction,
and near homogeneous in the x direction. All deriva-
tives of time-averaged quantities are zero in the z-
direction, and nearly zero in the x-direction. Moreover
the correlations u'w and vw’ are zero. However, w'> is
non-zero, and this term keeps the Reynolds stress tensor
uju’, as three dimensional. The outer velocity scale for
the boundary-layer flow problem is the free stream ve-
locity, U., and for the channel flow problem it is the
sectional average velocity V. The outer length scale for
the boundary layer problem is the boundary layer thick-
ness § or the displacement thickness §*. For the channel
flow problem it is the half width of the channel H. Both
the problems have the same inner scalings, namely fric-
tion velocity, v* as the velocity scale and with v/v* as
the inner length scale. The characteristic Reynolds
number for the problems are respectively R = U, /v for
boundary layer flow, and R = VH/v for channel flow.

One needs now to look at the closure problem for the
modulation Reynolds stress tensor 7,. Much of the
physics of this problem is described in ref. 16. The sali-
ent points are that, so long as organized disturbances
are small compared to the random disturbances, the
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problem continues to be defined by the Generalized Eddy
Viscosity Hypothesis (GEVH), in which the turbulence
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Figure 1. a, Definition sketch for the flat-plate turbulent boundary-
layer; b, Definition sketch of the channel flow.
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Figure 2. a. Graph of anisotrophy function (from expression for 4,)
versus y ( = y4/8), standardized in terms of outer variables; b, Graph
of anisotropy function A" (= ) versus y*, standardized in terms of
inner variables. Comparison of the anisotropy function based on
experimental data of Klebanoff, and expressions A; and As.
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problem is described by one length scale and one veloc-
ity scale. Further the turbulent and mean flow time
scales are comparable. Under GEVH, therefore, the
stress tensor can be described by appropriate general-
ized tensorial combinations of turbulence-related quan-
tities and mean flow gradients. In order to improve over
the formulation of Reynolds and Hussain®, it was found
expedient to use an ‘anisotropic eddy viscosity model’
based on the model proposed by Pope'”. This model is

— 2 _ A 1 _ _
—u; = —gké‘ij +es; —s[aj{g[mikskj = 53Oy ]} s

)
where k& E%(Tu;) is the turbulence kinetic energy, and
two empirical functions are introduced, namely the eddy
viscosity € and the so-called ‘anisotropy function’ A.
Both these quantities require some description. But
prior to that, it is instructive to note that the fensorial
form of equation (8), as shown by Pope'’, is quite
unique; only the defining constants, or scalar functions
like £ and A, need to be determined from matching with
experimental data. Thus, equation (8) is a significant,
consistent and also tfensorially unique improvement
over the isotropic eddy viscosity model, which is ob-
tained by putting A = 0 in (8).

Details of the eddy viscosity, also defined in non-
dimensional form as E =é&/v, may be seen in ref. 16.
Basically, in the inner region, E scales with inner vari-
ables and is universal. In the outer region the shape of £
is problem specific, like whether channel flow or
boundary layer flow is being considered, and the magni-
tude of E depends on the flow Reynolds number (based
on outer variables).

The anisotropy function A is formally defined as
A=C(k/(=u"y)), where C is a constant that needs to be
matched from experimental data. Details of the match-
ing procedure are discussed in ref 16. As may be seen
from (8) above, if A =0, then all the normal stress com-
ponents u'?,»’* and w? are identical and equal to Zk.
Surely such a model is gravely in error close to the wall
where these quantities are very different from each
other. With A non-zero, it is seen from (8) that the nor-
mal stress components can be made unequal. Thus, by
matching from experimental data A may be suitably
back-calculated.

Generally speaking, two features are salient in the
empirical definition of A, namely it has a high value
(around 10) near the wall and tapers off to a low value
and finally to zero in the outer region. Thus, the most
‘comfortable’ shape of A, from the viewpoint of (easing
of) stiffness of the numerical calculations for stability,
is shown in Figure 2 a. The algebraic details are given
in ref. 16. This particular form, called A = A,, basically
is written in outer variable form. The high value persists
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till about mid range in y, and is made to taper off to-
wards the boundary layer edge/channel centerline.

Two other forms of A, namely A, and A; are shown in
Figure 2b. This figure also shows the actual back-
calculated value of A from experimental data. Based on
this experimental plot two other empirical forms of A,
namely A, and A;, were obtained and used in the calcu-
lations. The detailed expressions may be seen in refs 16,
19. Essentially, A, and A; are based on inner variables,
and are identical till about y' =50, after which A, is
made to attain a constant value of 3; whilst A; is tapered
off to 0 in the outer region. As will be seen later, the
stability calculations are not much affected by the as-
sumed form of A, especially for the inner modes. How-
ever A; is the best overall choice, as the same
expression can be used for capturing inner and outer
modes. Besides, A; is more faithful to the experimental
data also.

We now proceed further with the formulation. Using
some arguments discussed in detail in ref. 16, the same
form as (8) may also be proposed for (u;u’). The salient
points are that (i) the presence of organized distur-
bances does not modify turbulence-related quantities
like the eddy viscosity; and (ii) the organized distur-
bances do modulate the mean-flow, as may be seen from
(3 a, b). Thus one obtains
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Figure 3. Graph for rms values of # and v versus y. Normalization,
¢=1+0i at y=1.0 for channel flow and, R= 5000, o=3.15,
c:=0.3816348, ¢i = 0.0040752. Normalization ¢ =1+ 07 at y=1.5
for the boundary layer and R =15000, a=2.7, ¢ =0.3486034,
¢; = 0.0044436. (The channel flow curves have been scaled up by
1000 for comparison) (here A = A1).
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