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A central theme in the history of the turbulence prob-
lem is about the method of ‘closure’ in the models and
‘theories’ which have been proposed. Closure has in-
variably been by empirical calibration with experi-
mental data. In this note we draw attention to a paper
by Morris, Giridharan and Lilley, in which for the
first time empiricism is obviated. For the turbulent
mixing layer, this is accomplished by including in its
description the mechanism for production of turbulent
shear stress (i.e. turbulent momentum transfer), by
large-scale instability waves. Some implications for the
theory of turbulent shear flows are discussed.

IN the list of labels that attempt to describe the century
just ending, one might include ‘The Century of the Prob-
lem of Turbulence’. The ‘problem’ had been identified
by the end of the 19th century. In Horace Lamb’s classic
monograph, Hydrodynamics (1906, Third Edition), he
introduces Article 365, on Turbulent Motion, with the
sentence, ‘It remains to call attention to the chief out-
standing difficulty of our subject’. That statement is ap-
propriate a century later and this note is to call attention
to some progress. But first some background.

As a practical matter, the ‘difficulty’ in the latter half
of the 19th century was found mostly in hydraulic engi-
neering design. Pressure-flow relations in hydraulic
pipes and conduits were quantitatively quite different
from those predicted by theory, e.g. the Hagen—
Poiseuille relation. Hagen in 1839 noted the appearance
of ‘peculiarities’ as flow magnitude increased. To make
such formulae work for them, engineers introduced ‘ap-
parent’ coefficients of viscosity having values different
(higher) than the actual coefficient of viscosity of water.
Increasing with pipe size and flow velocity, such coeffi-
cients were simply empirical factors that allowed ex-
perience to be organized for further use. Even today one
might find an investigator, attempting to model flows at
atmospheric scales, e.g. a tornado, introduce for ‘eddy
viscosity’ a value of 10* m?%/s, which is about 10° times
the value of the physical kinematic viscosity of air.

By the end of the 19th century it had been clearly
recognized that the problem was connected with the fact
that the theoretical result is for smooth, laminar flow
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while the flow in large-scale applications is turbulent.
The phenomenon had already been named in the 16th
century by Leonardo da Vinci, whose sketches and
notes on it are well known. The transition from laminar
to turbulent flow in a pipe was demonstrated by Os-
borne Reynolds, in 1883, in a paper in which he also
introduced the dimensionless parameter 7UD/i as the
similarity parameter, which allowed experiments at dif-
ferent scales to be correlated. It is now called the Rey-
nolds Number, Re.

But even before Reynolds’ experiment, it was recog-
nized that turbulent flow results from instability, and
scientists such as Helmholtz, Kelvin and Rayleigh initi-
ated the discipline of flow stability theory. Starting with
the stability of parallel flows, the theory and experi-
ments have been extended to a variety of configura-
tions. As noted in the book by Betchov and Criminale,
the ‘manifestations of instability” could be grouped,
roughly, into three categories: (i) oscillations in nearly
parallel flows, such as pipe flow, boundary layers, jets
and wakes; (ii) flows with curved streamlines, as in
Couette flow between concentric rotating cylinders, in
which cellular as well as unsteady motions develop; and
(iii) flows in which the reference, mean velocity is zero,
as in convection of heat between two surfaces at differ-
ent temperatures, where instability also results in cellu-
lar motion. An important ‘manifestation’ of instability
is the turbulence that develops when the value of Re
continues to be increased beyond the critical value.

The transition from initial instability to turbulence (as
some parameter, usually Re, is varied) appears the most
difficult to understand and describe. The corollary of
that viewpoint is that the ‘fully developed turbulent’
motion which follows is simpler, in some sense. The
developing instability is abandoned and the turbulence
is now viewed as a state, which may be simpler to de-
fine and model. That view has been dominant in the two
main trends that characterize most of turbulence re-
search during the century. One is the search for models
of the Reynolds Averaged Navier—Stokes (RANS) equa-
tions first derived by Reynolds, which address the
mean-flow quantities and to which we will come pres-
ently, and the other is the so-called statistical theory of
turbulence which seeks statistical descriptions of the
turbulence itself, mainly through correlations of fluctu-
ating velocity, in anticipation, of course, of ultimately
contributing to the complete problem.
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It is useful to examine several aspects of the ‘problem
of turbulence’ and what one might expect of a ‘solu-
tion’. For a start, it may be noted that the turbulent flow
is described by the unsteady form of the Navier—Stokes
equations, which accurately apply to turbulent motion
of Newtonian fluids such as water and air. But the com-
plete detail provided is excessive. For many applica-
tions one needs only the mean flow field which, of
course, will exhibit the effects of enhanced transport by
turbulence in terms of growth rate, entrainment, etc. To
describe this is the main goal in RANS modeling, in-
deed of turbulence theory.

Of course, it is also desirable and, in many cases, im-
portant to also describe the fluctuating motion. In fact
one can argue that it is not possible to model the mean
flow field without somehow incorporating the turbulent
motion itself. That statement must certainly be true for a
rigorous model but if any empiricism is allowed (even
one constant!) then considerable organization of some
turbulent flows can be achieved by similarity and scal-
ing arguments alone. For example, for the canonical
class of turbulent-free shear flows, which are assumed
to have developed an equilibrium, self-similar state, a
fitted constant for each flow does quite a good job of
correlating the growth rate with the entrainment rate
and the mean shear stress. One way to accomplish this
scaling is to apply it to the eddy viscosity, ir. Identify-
ing a velocity scale, U, and a thickness scale d, the ve-
locity distribution is assumed to have a similarity form
u()/U = fu(y/d) and the eddy viscosity ir = constUd
then carries the constant which has to be fitted. Simi-
larly, for turbulent pipe flows and boundary layers,
‘mixing length theory’ led to the logarithmic law, which
does a good job of fitting the region close to the wall in
both flows. Although the term ‘mixing length’ is remi-
niscent of turbulence, the model is based on scaling
arguments, helped by experimental data, and it contains
two constants that are fitted to the data. Its apparent
universality gives it an appeal, which typically charac-
terizes hopes for modelling of the RANS equations.
However, rationalization of ‘universal’ but empirical
constants like the Karman constant é, in terms of the
underlying mechanics, is elusive.

The other direction in turbulence research, sometimes
called the ‘statistical theory’, describes properties of the
fluctuating flow field. Introduced in the 1930s by G. L.
Taylor, it seeks equations and relations for correlations
of the velocity fluctuations, i.e. a statistical description
of the turbulence. A notable success was Kolmogorov’s
concept of a ‘universal inertial range’ for a limited
range of the correlations at small scales. Again, this
makes use of scaling and similarity arguments and in-
troduces the ‘fundamental’ Kolmogorov constant. These
and other more recent efforts, such as the theory of dy-
namical systems, have provided many insights into tur-
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bulence. But the original ‘problem of turbulence’, to
account in a satisfying, nonempirical theory for the en-
hanced transport in turbulent shear flows, had remained
out of reach.

The main purpose of this note is to bring attention to
a paper by Morris et al.' (henceforth MGL) which
unites the two tasks outlined above. It describes, with-
out fitted constants, the mean flow properties of turbu-
lent-free shear layers as well as the energy containing
scales of the turbulence. This is accomplished by ex-
plicitly incorporating the instability mechanism, which
produces and continually renews the turbulence. While
the mixing layer is probably the simplest one for a suc-
cessful application of the idea, because of its strong
underlying Kelvin—Helmholtz instability, the result is
very significant. The much noted problem of closure
has been accomplished, for the first time, by introduc-
ing into the RANS scenario the physical mechanism
which drives the flow!

The stage for the emergence of this model was set
during the past quarter century with the realization that
instability waves, and resulting ‘coherent structures’,
are dominant features of mixing layers even beyond the
initial transition region, i.e. at values of Reynolds num-
ber for which the flow is ‘fully developed turbulent’
(Figure 1). Various investigators had noted a connection
between growth rates and instability amplification rates
from basic linear stability theory, including nonlinear
effects from instability cutoff, but it was left to MGL to
ingeniously incorporate these ideas into a model that
requires no calibration. For this class of flows it is a
theory, without empiricism, for the first time. The prin-
ciple can perhaps be extended to a broader class of tur-
bulent shear flows.

Before briefly outlining the essence of the MGL the-
ory, which was developed for plane mixing layers, we
review the generally well-known equations that are ap-
plicable.

The equations

The RANS equations for nearly parallel flow, with
mean velocity field (U, V) in (x, y), but admitting three-
dimensional velocity fluctuation (u’,v’, w’), are the
continuity equation

W v

A 1
8x+8y ) (1

and the momentum equation
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Figure 1. Mixing layer with uniform density, U»/U; = 0.38 and R. = 0.5 x 10%, based on (U, — Uy) and length visible in the picture.

Apart from some refinements which include the correla-
tion 472, this is the basic set of equations relating
the mean flow to the turbulent velocity correlat-
ion (—pu"’), which is also called the ‘Reynolds stress’
because it acts in the momentum equation in the same
way as the Newtonian stress © = idU/dy, i.e. to trans-
port momentum across the flow. But, unlike T, it cannot
be rigorously related to the local velocity gradient, or to
any other local property of the mean velocity field. It is,
basically, the problem of closure for the RANS equa-
tions. In free turbulent shear flows, the Newtonian
stress is negligible for high values of Reynolds number;
those flows are therefore independent of viscosity, and
considerable simplifications result. For a mixing layer
(Figure 2) for which initial conditions are also negligi-
ble, it implies that the mean values and the correlations
are functions only of the similarity variable n = y/x; the
shear-layer growth J(x) is linear; and the Reynolds
stress p(—u") has its maximum and constant value on
the zero streamline y* = (0), defined by y*/x = const.
(All other streamlines entering the mixing layer from
either side are not straight. For suitable choice of the
far-field boundary conditions, y* = 0.)

As shown by von Karmén for a boundary layer next
to a wall, integration of the momentum equation over
the layer, in the y-direction, and taking into account the
continuity relation, results in the integral relations,

— d T
Py = [pUU; Uy
i 3)
d ¥
:aj‘pU(U—Uz)dy.

The statement here is that the stress p(—u’v’)* on the
zero or ‘dividing’ streamline is equal to the rate of loss
of momentum flux above y* = 0 and to the rate of gain
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of momentum flux below wy* =0. Momentum is ex-
changed between the faster, upper flow and the slower,
lower flow by the action of the Reynolds stress. The
integral relation can be put in dimensionless form by
introducing the similarity variable U/U; = f(3/3), where
d(x) is some measure of the scale (thickness) of the
mixing layer. Simplifying for uniform density, the re-
sult is

V) _

j 7= fan = jf(f Uy /Updn. (4)
vy

This exhibits the direct relation between Reynolds stress
and growth rate. The two integrals have the same nu-
merical value Iy, which depends on the shape of the
velocity profile.

In addition to the basic RANS equation for momen-
tum, one can obtain two important energy equations,
for the mean kinetic energy K =% U2 + Vz), per unit
mass, and for the turbulent kinetic energy

k= %[u’z v 4w 2]. An integral of the mean kinetic

energy equation, analogous to that for the momentum, is
dT (1 1
=< Uz——U —j ulvr-Zu? d
j [ zjd o p [2 Sl y
y*
__4 TlpU(U -UYU-U,)dy <0 (5
dr J 2 1 2)ay <y

The first two integrals represent gain of kinetic energy
in the lower and upper parts of the layer, respectively.
The first one is evidently positive and the second one,
negative. But unlike the case for momentum, the two
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Figure 2. Plane mixing layer.

integrals do not balance each other; the mean kinetic
energy is not conserved but is decreasing, as confirmed
by the second equation, which is obtained after some
rearranging and making use of the integral momentum
equations. An alternative derivation gives

T o=, T (wY
- j p(—uv)gdy—_j u[gj d. (6)

The loss of mean kinetic energy from the incoming flow
is generated from the product of Reynolds stress and
mean velocity gradient in the shear layer, analogous to
that from the viscous dissipation term,

oU U
[“ 3 ] 3
Yy )y
As in the momentum equation, the viscous contribution
is negligible at high values of Re. The Reynolds-stress
term also dissipates mean-flow energy, but does not
(immediately) convert it into heat, but rather into turbu-
lent kinetic energy, as becomes evident from the follow-
ing equation for £.
The integral relation for the rate of increase of turbu-
lent kinetic energy is

dT —
— Uk+ pvd
dx_(p pv)dy

jp(— )—dy j

(Convection terms involving correlations like u’k” have
been omitted.) The first term on the right hand side is
the same as in (eq. (6)) but with changed sign; it now
contributes to increase of turbulent kinetic energy & and
is, appropriately, called the ‘turbulence production’
term. The last term, contributing to decrease of k, ac-
counts for viscous dissipation by the turbulent, fluctuat-
ing velocities and is not negligible, because the
gradients may be very large. In fact, it is thought that at

(7
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high Reynolds number the gradients increase as i de-
creases so as to keep the dissipation term constant and
thus independent of Re; this accommodates the message
from the momentum equation and from experience, that
free turbulent shear flows are independent of / at high
Re. This viscous dissipation term is an important com-
ponent in approaches to traditional RANS modelling,
e.g. in the popular &—d model.

Like the momentum equation, the energy equations
can be written in non-dimensional forms. In these the
growth rate appears as coefficient of integrals whose
numerical values can be defined by choosing a shape
for the velocity profile U/U, = f(y/d). That is, the
growth rate is proportional to various other quantities
that are proportional to the turbulence intensity, in par-
ticular the Reynolds stress, the rate of dissipation of
mean kinetic energy and the rate of production of turbu-
lent kinetic energy. Entrainment rates can be similarly
correlated. Thus the various effects of turbulence in this
self similar flow are obtained from the fitting of a single
constant. But in that constant is the essential mechanics
of the turbulence, which so far has not been put in. That
closure is what the MGL model accomplishes, by rec-
ognizing that the development of the flow is dominated
by large-scale structures like those in Figure 1, which
can be ‘described by a superposition of instability
waves’. As had been noted by various investigators, the
local properties of these structures are described well by
linear stability theory and the parametric dependence of
spreading rate correlates well with maximum amplifica-
tion rates from linear theory. Those properties are used
by MGL to model the turbulence production term that
appears in both energy equations. Non-linearity comes
from the effects of shear-layer growth.

The MGL model

The paper by Morris et al.' is comprehensive, including
effects of non-uniform density as well as compressibil-
ity. To simplify and shorten the presentation here, we
restrict it to homogeneous, incompressible flow and
make use of the integrals from the preceding section,
some of which differ in form from those used by MGL.
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The only parameters remaining from Figure 2 are U,
and r = Uz/Ul.

The velocity profile shape f{¢; ) in the integrals is
assumed to be a tanh function. This is also the profile
used to calculate local values, at d(x), of the eigen val-
ues and eigenfunctions for excitation frequencies # and
a (i.e. spanwise modes are included). The amplitudes of
the instability waves are calculated, simultaneously with
d(x) as the shear layer develops, from the equations that
will be noted presently follow and from a linear, invis-
cid stability equation. A spectrum of excitation frequen-
cies is made available.

In the turbulent energy eq. (7) the integrands contain
squares or products of fluctuating velocities, which are
proportional to the square of the amplitude, 4, for each
developing wave. Therefore the dimensionless, self simi-
lar form of the turbulent energy eq. (7) can be written

d
a(mk) = A1y, (8)

where 7, is the flux integral and /p is the production in-
tegral. Their numerical values, which depend on the
eigen functions, do not in fact have to be evaluated!
A ‘normalization’ sets I, =1 and eq. (8) may be dis-
played as
2 2
au” A—IP 2%

& B dr ®)

For exactly parallel flow, dd/dx =0, the equation is
compared with the relation for growth of amplitude
from linear stability theory,

d4®
= A% (20,
| (—20;)

where 4; is the imaginary part of the wave number and
is negative for positive growth. This is used to make the
identification

Ip = (<208 (10)
and then eq. (9) takes the form
’ > d3
—=A"(20,0)-4"—. 11
& (=201;0) & (1D

A second equation relating 4(x) and d(x) is obtained
from the mean energy eq. (6), i.e.

dd
]EE:AZIP,

where
-
Iy =5_j A= F)f =ren.

838

With [p identified in eq. (10), the energy relation is fi-
nally reduced to

B _2 L)

a1 (12)

Equations (11) and (12) are a coupled set of equations
for the simultaneous development of A4%(x) and d(x) for a
given wave responding to frequencies (u, 4). The
growth of the shear layer depends on energy transfer
from all spectral components to which it is responding;
the total effect is summed symbolically in the two equa-
tions (2.22 and 2.23 in MGL),

(d/d)A%(x; @, B) = - A7(x; ®, P)
x {20, (w, Py + 871 (dd/dx)},

dd 45

dc (=P s+ 1-P)I,]

X T Toci(w, B)A%(x; 0, B)dp dow.

0

but the actual calculations are made on a set of N+ 1
equations for each set of N waves in the spectrum. (The
integrals /; and I, are different from those in our simpli-
fied presentation.)

The set of equations and integrals developed by MGL
accommodate non-uniform density as well as com-
pressibility, hence are not quite as simple as shown
here. To calculate a developing shear layer, for given
parameters, U,/U,, #i,/fi, and M, the linearized inviscid
stability equations (Rayleigh; Lilley) are used to solve
for the eigenvalues and eigenfunctions for a range of
local frequencies #ud and dd, (i.e. scaled with local &),
thus describing a ‘weakly nonlinear’ development. The
excitation spectrum at x = 0 is flat, with amplitude 0.01.
From the eigen solutions, only the &; are needed for
solving eqs (11) and (12). The eigenfunctions are used
separately, for defining the spectrum of fluctuating ve-
locities in (#, @) coordinates. It is found that streamwise
instabilities (i) rapidly become dominant, i.e. the mo-
tion tends strongly to be two dimensional.

From the solutions for 4%(x) and d(x), results for the
dependence of dd/dx on Uy/U,, 7i,/7i; and M are obtained
and found to agree well with experimental data. From
the eigenfunction part of the solution, good agreement
is found for the spectral distribution in the low-
frequency part of the spectrum, which simply does not
extend to higher frequencies than those that are selected
by the developing equations. Comparisons of the distri-
butions of turbulent correlation, including Reynolds
stress, which could be obtained from the eigen solutions
are not presented. The comparisons made are impres-
sive, recalling once more that the model contains no
empirical constants.
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Observations

The results outlined above may seem astonishing, per-
haps improbable, to many who are schooled in the tradi-
tional theories of turbulence. ‘Where is the turbulence,
the chaos, the small scales?’ one might ask. The turbu-
lence is in the large-scale wave packets, whose distribu-
tion is not deterministic, because of the broad spectral
forcing, while chaos from three dimensionality and
small structure is absent. The turbulence seems to be
minimal. Indeed, the theory accords with a maxim at-
tributed to Einstein, that ‘everything should be as sim-
ple as possible but not too simple’. That is, it should not
omit the essential, which here is the production of Rey-
nolds stress by instability waves. This essential has
been missing from models of turbulent shear flow;
without it the problem of ‘closure’ seems bound to re-
main empirical. How the principle can be implemented
in other shear flows is a separate (but not trivial) matter.
Perhaps, quoting J. E. Broadwell, simplicity of the mix-
ing layer makes it the ‘hydrogen atom’ of turbulent
shear flows. For example, in plane jets and wakes
spanwise instabilities are as strong as the streamwise
ones, hence the resulting primary instability is three
dimensional. Correspondingly, in axisymmetric jets and
wakes the primary instability is helical, not axisymmet-
ric, so the implementation will be more difficult in prac-
tice if not in principle. For boundary layers and other
wall-bounded flows it will be necessary to include the
coupling with the wall region, where viscosity and
small scales do participate in the development of the
layer.

It is interesting to contemplate the implications of the
results and how they may relate to some of the axioms
of turbulence research. One of these is the view that,
although free turbulent flows ‘are independent of Rey-
nolds number’, the viscous dissipation must be included
in modelling them, as already mentioned above. This
was not necessary for the MGL model, neither was it
necessary to include small scales. MGL argue that the
development of the large scales and the growth of the
shear layer are not sensitive to the details of energy
transfer to small scales and, ultimately, to heat, hence
omission of the viscous term in eq. (7). They describe
alternative, simpler procedures to account for energy
that must be dissipated. In fact, the result conforms with
the cascade description of spectral distribution of en-
ergy and its dissipation, first by small-scale turbulence
and then by viscosity, and it indicates that this two-
stage dissipation mechanism does not impact the large-
scale momentum exchange. The view that models must
explicitly include the dissipation scenario is influenced
by the Eulerian point of view, in which /ocal dissipation
appears equally important with production. But a more
appropriate view is a Lagrangian one: the momentum

exchange is local but the dissipation of the energy
which is lost in the process need not occur at the same
place; it need not even appear in thermal motions but
could remain in the layer as small-scale turbulent mo-
tion, as noted by Onsager many years ago. In the Eule-
rian, local energy balance, the viscous dissipation term
accounts for energy lost in earlier momentum ex-
changes; if viscosity were identically zero it would not
appear at all and then some terms in the energy balance
would look different, with the dissipation term missing
and others, e.g. convection of turbulent energy, changed
to exhibit the Eulerian balance.

Another feature is that motions induced by spanwise
instabilities are not important in the model, nor are
other manifestations of three-dimensionality. The im-
portance attributed to three-dimensionality, vortex
stretching, etc. in turbulence may be relevant to the dis-
sipation mechanism but not to the primary, stress pro-
ducing components.

Still another implication to be considered relates to
the coupling of the turbulence to the external forcing.
Inviscidly unstable, the shear layer responds convec-
tively to the smallest amplitudes of forcing, but that
forcing must have a broad spectrum (ideally continuous
and flat) if the layer is to grow linearly as postulated in
dimensional/similarity analysis and as observed in the
laboratory. If the broad spectrum is not available or if
its amplitude is too small the layer will respond to
available tones or narrow bands, provided they override
the background. This effect and the resulting nonuni-
form development of dd/dx was first demonstrated by
Oster and Wygnanski. An implication of all this is that
turbulent theories which seek a kind of local, constitu-
tive description, universal and independent of the par-
ticular flow, are not likely to be successful. The MGL
model provides an alternative methodology.

Concluding remark

The MGL theory brings together the two trends in tur-
bulent research mentioned earlier, i.e. to account for the
greatly enhanced transport and to describe the turbu-
lence. The first is not separable from the second but, for
free turbulent shear flows, only the large-scale energetic
part of the turbulent structure is needed.

1. Morris, P. J., Giridharan, M. G. and Lilley, G. M., Proc. R. Soc.
London, 1990, A431, 219-243.

ACKNOWLEDGEMENTS. This article is not a review and explicit
references are not provided except for the paper on which the discus-
sion is focused. During the last quarter century many investigators
have made significant contributions to the ideas that have developed
toward that focus. This writing has benefited from many discussions
with J. E. Broadwell.

CURRENT SCIENCE, VOL. 79, NO. 6, 25 SEPTEMBER 2000

839



