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Three basic problems of hydrodynamic stability have
been considered recently. First, the weakly nonlinear
theory of hydrodynamic stability is found to yield
only equilibrium solution, not transient solution, and
the solution is not convergent. Second, by numerical
simulation, it has been found that in supersonic
boundary layers, shocklets will be induced even by
small amplitude disturbances, and must therefore be
considered in setting up rational theories of hydro-
dynamic stability for such flows. Third, a new
method for inducing large-scale structures in com-
pressible mixing layers has been suggested.

Introduction

Hydrodynamic stability is an important branch of fluid
mechanics both from theoretical and application points
of view. This paper presents results on three problems,
which we thought were important, obtained recently by
our group in Tianjin University.

First, it was found that the widely known weakly
nonlinear theory of hydrodynamic stability was incapa-
ble of quantitatively explaining experimental findings,
so we tried to find the reason. Eventually, we found that
the original theory, though intended to deal with the
evolution of disturbances, was actually good only for
equilibrium states. Also, the solution, obtained in series
form, does not converge absolutely.

Second, the stability of supersonic boundary layers
has attracted more and more attention in recent years
because of its practical importance. Extension of the
nonlinear theory for incompressible flows to supersonic
flows has been proposed. However, in our view, shock-
lets might be induced in supersonic boundary layers
even when the amplitude of disturbances is still small.
Numerical simulation has been carried out for a super-
sonic boundary layer with a small amplitude distur-
bance introduced into the flow, and the results show
that shocklets were indeed induced. Thus, any attempt
to set up a nonlinear theory for supersonic flows has to
take this fact into consideration, and shock capturing
schemes must be used for numerical simulations of such
flows.
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Third, introduction of instability waves into shear
flows has been proven to be effective for controlling the
mixing in incompressible flows. However, for com-
pressible flows, this method becomes less effective due
to the fact that the amplification rate of the instability
waves becomes smaller as the compressibility effect
increases. A new method of inducing large-scale struc-
tures in compressible mixing layer has been tested by
numerical simulation. 2-D test cases showed that the
proposed method is indeed effective.

An analysis of the weakly nonlinear theory of
hydrodynamic stability

The weakly nonlinear theory of hydrodynamic stability,
first proposed by J. T. Stuart’, is widely known. How-
ever, there are two major problems that have been over-
looked by most people. First, the solution given by the
theory is only good for equilibrium. Second, the equi-
librium solution is always divergent. In the following,
we will give a brief analysis.

We will use the formulation in real form, and will
limit ourselves to the temporal problem of 2-D plane
Poiseuille flow.

The Navier—Stokes equation, continuity equation and
the boundary conditions read

8u 1 2
—+u-V)u+Vp+—=V-u=0, m
S T V)usvpr

V-u=0, and u=0at y==1,

where u = {u, v} is the velocity vector, u and v its
components in x (stream-wise) and y (normal) direc-
tions respectively, ¢ the time, p the pressure, V the gra-
dient operator, R the Reynolds number, all of them have
been made non-dimensional.

In the weakly nonlinear theory, assume there is a
small parameter €, and the solution can be expanded as
a series in &,

{u, p}" = {ug, po} "+ e{uy, pi}" + & {uy, po}' + -, (2)
where {ug, po}’ is the basic flow and {u,, p,}" the solu-
tion of the corresponding linear problem. For the tem-

poral mode, the linear solution can be written as
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fu, pi}" = {8, (). Py )} expli(ax — 0H] +c.c., (3)

in which c.c. stands for complex conjugate, o is the
given wave number, and ® = ®, + i®; the complex fre-
quency. If we normalize {d,(y), p,(»)}" but keep the
notation unchanged, then in eq. (3) there should be an
amplitude parameter a. If we let the linear growth rate
be absorbed into a, then we can write

{u, pi}" = a[ {8, (), oy ()} exp(iB) + c.c.]l, (4

0 = ox — W,
Obviously, for the linear problem, we have
da/dt = wa, d6 /dt = -,

For the nonlinear problem, after some derivation, one
would obtain the Landau eq. (5) and system of perturba-
tion (eqgs (6)) (refs 2, 3), in which 4; and B, should be
determined during the course of solution by the so-
called solvability condition.

da ; de ;
= + J = a’
; W;a :E A;a’, ; -, + E B;a’, (5

j=3,5 =24,
d d d 1
0,02 gy, T gy S +vndﬂ+Vpn ——V?u,
da d0 ox dy R
du,  ou, ()
Jtk=n jtk=n
Jhk21 G k21

V-ou,=0,and u, =0 at y ==%1.

In the original theory, solutions of eq. (6) were only
sought in the form of a"@Q,,exp{im0}, where m is an
integer. However, it is only a particular solution. The
general solution of the corresponding homogeneous
equation of (6) has been neglected. Thus, the solution so
obtained is not good for describing the transient proc-
ess, and this fact has been overlooked by almost every-
body working in this field.

At first sight, the neglect of this solution seems to be
reasonable, as the corresponding homogeneous equation
of (6) does not allow such solutions with integer n and
m, if both of them are not equal to 1. But mathemati-
cally there is no reason why non-integer n and m should
not be allowed, and if we seek the solution in the form
of a”exp(ipm®), in which s and p are real numbers,
then the corresponding homogeneous equation of (6)
does have a solution, and in fact, an infinite set of ei-
gen-solutions. Only with these solutions added is a gen-
eral solution obtained that can deal with transient
problems.
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So the first conclusion is that using the Landau equa-
tion for describing the transient process is conceptually
incorrect.

Since the solution is expressed as a series, mathe-
matically it can offer a useful solution only if it is abso-
lutely convergent. Otherwise the solution will depend
on the order of summation, thus rendering it mathemati-
cally ambiguous. In choosing a particular partial set of
the infinite series solution, we were able to derive a
necessary condition for the absolute convergence of the
Landau series and the solution itself. The condition
reads

N
ZASaS_l /mi <1. (7)
5=3,5

JSs O

If we truncate the first Landau equation at order N, and
put da/dt = 0 to solve for the equilibrium amplitude a.,
then for this a., we have

N

Y 40 o =1

5=3,5,

Hence for this a., the Landau series cannot be abso-
lutely convergent. We can also prove that the solution
itself is not absolutely convergent.

The details of the analysis can be found in refs 2, 3,
and ways for its amendment have been proposed, which
seemed to be successful on comparison of the results
with corresponding direct numerical simulations.

Stability problem of supersonic boundary layers®

Recently, the problem of transition in supersonic
boundary layers has attracted more and more attention
due to its technical importance. Up to now, most analy-
ses were linear, and detailed experiments are very rare.
People have tried to extend the nonlinear theory of hy-
drodynamic stability for incompressible flows to com-
pressible flows. However, in our opinion, it has to be
done very cautiously. Because, firstly, there is no de-
tailed experimental observation that can help theoreti-
cians to set up theoretical models. Secondly, for
supersonic boundary layers, shocklets might be induced
by the disturbance even when its amplitude is still
small, which implies that discontinuities exist in the
flow field, thus making any analytical method very dif-
ficult, if not impossible, to apply.

The existence of shocklets can best be verified by ex-
periments, but this is extremely difficult. The other way
is by numerical simulation. We have carried out nu-
merical studies for a 2-D problem of a supersonic
boundary layer.
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The computations were made for a flat plate boundary
layer with oncoming uniform flow of Mach number
M =4.5. First, the basic flow was calculated for a
length in x-direction sufficiently long, about 75 wave-
lengths of the T-S wave, which was introduced later.
Then we chose the flow field between the sections
x=1030 to 1250, measured by the boundary layer
thickness at x = 1000, and introduced a T-S wave with a
frequency ® = 0.37822 at x = 1030, where the Reynolds
number was about 1500, based on the momentum thick-
ness at x = 1000 and the velocity and viscosity at infin-
ity. The shape of the T-S wave was solved from the
eigenvalue problem of the Orr-Sommerfeld equation,
using the local flow profile as the basic flow. Three dif-
ferent amplitudes have been chosen, namely, 0.0001,
0.001, and 0.01.

For the numerical computation of the convection
terms, a shock-capturing scheme must be used, because
shocklets might be invoked by the disturbance. For this
reason the NND scheme’ was chosen. For the viscous
terms, a second order, central difference scheme was
used. The same schemes were used for the computation
of the basic flow. The time derivative was computed by
a 3rd order Runge—Kutta scheme.

The NND scheme expresses the first order derivative
as

/AR
ox jNAx

1 .
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and
a if Ja|<|b|
min mod(a,h)=5b if |b|<|a|
0 if axb<(,

where the superscripts + and — imply positive and nega-
tive fluxes after flux splitting.

The NND scheme is of second order accuracy, which
in general is not enough for a stability calculation. But
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unfortunately, to our knowledge, there is no shock cap-
turing scheme having an accuracy higher than second
order that can yet capture a shock as effectively as the
NND scheme, which is also very robust.

The NND scheme, like many other shock-capturing
schemes, has some sort of a so-called limiter, such as
the minmod operation involved above, which chooses a
concrete scheme according to the current local flow
condition. Thus, for non-stationary problems, the con-
crete scheme at any fixed point may change from time
to time, and numerical noise will be generated, con-
taminating the flow field. Therefore, we were not able
to get useful information for the disturbances by simply
extracting the quantities corresponding to the basic
flow, calculated before, from the instantaneous flow
quantities. Instead, the basic flow quantities must be re-
calculated by time averaging within a period, and actu-
ally will be different from those calculated before. For
the case with the amplitude of the T-S wave being
0.0001, we were not able to get a smooth evolution
curve even by such a procedure. For the other two
cases, smooth evolution curves for the amplitude of the
disturbances were obtained, as shown in Figure 1, in
which both curves have been normalized to have the
same initial value. The decay rate of the disturbance
with the initial amplitude of 0.01 is appreciably larger
than that with the initial amplitude of 0.001. For incom-
pressible flow, the difference should not be so large.

Figure 2 shows the iso-Mach number lines around the
critical layer for the case with amplitude 0.01. One can
see shocklets around the critical layer, but they are
rather weak and not so obvious. However, they may be
identified by the fact that in crossing the critical layer,
the periodic disturbance pressure and density become
out of phase, implying an entropy jump. Yet the shock-
let can only be clearly identified for the first wave cycle,
and then becomes weaker and weaker for the later cycles.
The reason for this is not very clear now, though it is
likely to be due to numerical dissipation and the dissipa-
tion mechanism of shocklets. Also, the decay rate

'\ — Am=0.001

8,043 v Am=0.01 -1 8.6
o 18

-3.003 : E —6.83
1828 185 114 153

Figure 1. The evolution curve for the disturbance of density.
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Figure 2. Iso-Mach number lines.

of the disturbance was different from that obtained by
the eigenvalue problem even for the case with ampli-
tude 0.001, because the order of accuracy of the NND
scheme is not high enough.

Although our results were not accurate enough, it is
clear that before any nonlinear theory of hydrodynamic
stability for supersonic boundary layers can be estab-
lished, more numerical work is needed. But more ur-
gently is the need to develop a high-order-accurate
numerical scheme that can capture shocklets effectively
and at the same time is accurate enough to meet the re-
quirement for stability calculation. This is not an easy
task. For the same reason, one should be cautious in
interpreting any results from numerical simulations for
the laminar-turbulent transition as well as for the turbu-
lence itself in supersonic flows.

A new method for enhancing the mixing of a
compressible mixing layer®

The mixing effect of a mixing layer depends largely on its
ability of generating large-scale structures due to its in-
herent hydrodynamic instability. However, for a com-
pressible mixing layer, the maximum amplification rate of
instability waves decreases as the compressibility effect
increases, so the mixing becomes less and less effective.

Wang and Fiedler conducted an experiment’ in which
the in-flow speed at the low speed side of an incom-
pressible mixing layer, confined in a tube, was forced to
undulate. With appropriate parameters for the undula-
tion, the mixing was greatly enhanced. Motivated by
this, a numerical simulation has been carried out to see
if this method was also effective for compressible
flows. But due to the limitation of the computer re-
sources, only 2-D counterpart of Wang and Fiedler’s
experiments has been simulated. A mixing layer with
Mach number M. = 0.6 at inlet centre has been system-
atically investigated.

The domain of computation is [0: x; —y;: yi], as shown
in Figure 3, in which, § is the semi-vorticity thickness
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Figure 3. Domain of computation and the velocity distribution.

at the inlet. The in-flow speeds of the upper and lower
sides are denoted by U, and U, respectively,

R, = (U= U)AU, + Uy

is the velocity ratio, equal to 0.24. U,, equal to (U, + U,)/2,
p., the density at infinity, 7,, the temperature at infinity,
and 8, were used as the reference quantities. The Reynolds
number was defined as R, = p,U,0/\L,.

In the numerical simulation, a 5th order upwind-
biased compact difference scheme was used for the
convection term. A 6th order centered compact scheme
was used for the viscous terms. At grid points next to
the boundary, the order of accuracy was reduced. The
numerical boundary conditions must be able to effec-
tively control the reflection of the waves at the bound-
ary. The method proposed by Poinsot and Lele® was
used for this purpose.

The accuracy and reliability of the numerical method,
as well as the correctness of the boundary condition,
have been checked in various ways, and the results were
found to be satisfactory.

To see which method was more effective for enhanc-
ing the mixing, by forcing the inflow speed at the low
speed side to undulate, or by introducing T-S waves,
test cases have been computed. The basic flow parame-
ters were the same, the amplitude of the undulation a,
and the amplitude of the T-S wave ar were the same as
0.1. The frequency of the undulation ®w, was 0.05, the
frequency of the T-S wave w1 was 0.05 and 0.442, and
the latter corresponded to the most unstable wave by
linear stability theory. The results are shown in Figure 4
in the form of simulated smoke lines, as the scale of the
generated large-scale structures could be clearly seen in
this way. Obviously, for this test case, the undulation of
the inflow speed is much more effective than T-S
waves in enhancing the mixing.

Changing the frequency of undulation but keeping all
other parameters unchanged, the simulated smoke lines
are presented in Figure 5. Notice that the length in x and
y directions is not in proportion.
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Figure 4. Comparison of results using different ways of control. a, Inflow speed undulate, ap = 0.1, ®y = 0.05; b, T-S wave introduced.

Figure 5. Smoke lines for different frequencies of undulation. a, ®, = 0.03, x; = 480, y; = 60; b, @ = 0.05, x; = 360, y; = 60;
¢, o =0.1,x=120, y=30;d, ® =0.15, x, = 120, y; = 30; e, @ = 0.3, x; = 120, y; = 30.

From Figure 5 we can infer that the lower the fre-
quency, the larger the scale of generated structures
would be. But as the frequency was lowered from 0.05
to 0.03, the size of the structure seemed to experience
no change. Physically, when the frequency approaches
zero, there could be no structure generated in any finite
domain. Therefore, for any practical equipment, there
must be an optimal frequency. For our case, 0.05 seems
to be the optimal value.

The amplitude of the undulation has also been
changed, with other parameters kept the same. The size
of the large-scale structures increased as the amplitude
increased. But it was not sensitive to change of ampli-
tude in the amplitude range 0.05 to 0.08.

The size of the generated structure was not sensitive
to change of Reynolds number.

From what we have obtained by numerical simulations,
we can infer that the mixing effect of a compressible
mixing layer can indeed be appreciably enhanced, if the
inflow speed at the lower speed side of the layer is made

to undulate. Among all parameters, the frequency and
amplitude are more important than others.

The supersonic mixing layer has also been tested,
qualitatively, and the conclusion remains the same.
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