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This paper presents an evolution-based approach for
solving multiple molecular sequence alignment. The
approach is based on the island parallel genetic algo-
rithm that relies on the fitness distribution over the
population of alignments. The algorithm searches for
an alienment among the independent isolated evolving
populations by optimizing weighted sum of pairs objec-
tive function which measures the alignment quality.
The parallel approach is implemented on PARAM
10000, a parallel machine developed at the Center for
Development of Advanced Computing, Pune, and is
shown to consistently perform better than the sequen-
tial genetic algorithm. The algorithm yields alignments
that are qualitatively better than an alternative
method, ClustallV,
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1. Introduction

Multiple molecular sequence alignments are among the
most important tools for analysing biological sequences.
Multiple alignments are used to study molecular evolu-
tion, to help predict the secondary or tertiary structure of
new sequences, RNA folding, gene regulation and poly-
merase chain reaction primer design. The fact that the
multiple molecular sequence alignment problem 1s of high
complexity has led to the development of different algo-
rithms. These algorithms roughly fall into two categories:
the greedy ones that rely on pairwise alignment and those
that attempt to align all the sequences simultaneously.

It 1s a standard practice to use the dynamic program-
ming method to align a pair of sequences'. To find an
optimal alignment for a pair of sequences of length m and
n, the dynamic programming method requires O(mn) time
and O(mn) space. The complexity of this method grows to
O(m") when applied to m sequences of length n. There-
fore, all of the methods capable of handling larger prob-
lems in practical time scales make use of progressive
alignment of Feng and Doolittle’. In progressive align-
ment, sequences are aligned in an order imposed by some
estimated phylogenetic tree. It first aligns the most closely
related sequences, gradually adding the more distant ones.
Some of the most widely used multiple molecular
sequence alignment packages like ClustalW*, Mutal and
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Pileup are based on this algorithm. They have the advan-
tage of being fast and simple as well as reasonably sensi-
tive. Their main drawback is the ‘local minimum’ problem
that stems from the greedy nature of the algorithm. This
means that alignments formed early in the process are
constructed without the knowledge of most of the avail-
able data, and therefore, may easily freeze in a mistake
that cannot be corrected later. It is to avoid this pitfail that
the second type of method has been designed.

The second type of method uses information from all
the input sequences at the same time. Finding the best
alignment from the number of possible alignments by this
method is very hard and for the ‘sum of pairs’ this prob-
lem has been shown to be NP-Complete®. However, using
Carrillo and Lipman algorithmﬁ, the multiple sequence
alignment program aligns up to ten sequences by reducing
the solution space to a relatively small region®. Other
global alignment techniques using the weighted sum of
pairs cost function involve the use of stochastic heuristics
such as simulated annealing’, Gibbs sampling and genetic
algorithms®.

There are two main advantages of using these stochastic
optimization methods. First of all they do not have any
strong restrictions on the number of sequences to align or
the length of those sequences. Secondly, they are very
flexible in optimizing any objective function. Genetic
algorithm is one of the well-known stochastic search
methods that 1s capable of finding near optimal alignment
from totally unaligned sequencesg. Implicit parallelism 1s
an added advantage of genetic algorithms and could
be exploited to get both speed-up and better quality n
convergence.

Two types of models are used to exploit the implicit
parallelism of the genetic algorithms: data parallel model
and the algorithmic model (island or fine-grained). The
data parallel model results only in a speed-up of the algo-
rithm without any qualitative improvement to the solu-
tions. To gain better solution, we designed an island parallel
genetic algorithm (iPGA) inspired by the natural process
of migration. Recent publications also indicate that para-
llel genetic algorithm with isolated subpopulations that
exchange individuals from time to time may offer an
advantage over the sequential approaches'®"".

In this paper, we describe an iPGA strategy that runs on
a distributed network of workstations. We show that our
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approach performs better than the sequential genetic algo-
rithm and an alternative method, ClustalW. The rest of the
paper is organized as follows: the second section des-
cribes the multiple molecular sequence alignment prob-
lem. The third section briefly describes genetic algorithms.
The fourth section discusses the iPGA. The fifth sec-
tion gives the implementation details and results. The last
section draws "the conclusions and summarizes the
present work.

2. Multiple molecular sequence alignment

Let S={S, 32 ...,95,) be the input sequences and as-
sume that n 1s at least 2. Let X be the input alphabet; we
assume that X does not contain the character *-’, so that a
dash can be used to denote a gap in the alignment. A set
§S={8, S5 ....8,} of strings over the alphabet
¥ =X U{-}),is called an alignment of S if the following
two properties hold:

1. The strings in §” have the same length.
2. Ignoring dashes, string S; is identical with string S

An ahgnment can be interpreted as an array with » rows,
one row for each S;. Two letters of distinct strings are
called aligned under § if they are placed into the same
column. Figure 1 shows an example of multiple align-
ment. It has fifteen rows, one per sequence. In this case,
each 1nput sequence has different lengths, and the output
alignment has 60 columns.

Algorithms that construct multiple molecular sequence
alignment require a cost model as a criterion for cons-
tructing optimal alignment. In the simplest cost model
there is a cost function sub: ¥’ x X — N. It can be defined
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such that sub(a, b) is the cost of substituting a b in
the second sequence for an a in the first sequence; also,
sub(—, b) is the cost for columns where the first seguence
has a gap and the second has a b, and sub(a, -) is the cost
for columns where the first sequence has an a and the
second has a — Each multiple alignment induces a pair-
wise alignment on the pair of sequences S;, S;. The cost of

pairwise alignment S, induced in a multiple alignment S’
of width w is

o(S.))= D, sub(S[il[k], S’Li1Lk]).

l<k<w

With this, the basic weighted sum of pairs multiple

sequence alignment problem is to minimize the pairwise
sum

C(S’) = 2 Wi.j C(S;.J‘).

i<j

3. Genetic algorithms

Genetic algorithms are efficient stochastic search methods
based on the principles of natural selection and genetics.
Genetic algorithm maintains a population of potential
solutions that evolves over time and ultimately converges
to a unique solution. Each solution is evaluated to give
some measure of its fitness. Then a new population is
formed by a selection mechanism that identifies the fittest
individuals of the current population. Selection always
ensures that the best individual has a higher probability to
reproduce and breed to form a new generation. Some
members of this new population undergo alterations by
means of two operators based on natural genetics: cross-
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over and mutation. Crossover combines the features of
randomly chosen individuals (pareants) to form two stmular
offspring by swapping corresponding segments of the
parents. Muration arbitrartly alters some values within the
individual, by a random change with a probability equal to
the mutation rate, A simple genetic algorithm is shown 1n
Figure 2. It is important to note that these algorithms
depart from the traditional algorithms in the following
ways: Firstly, it searches from a population of points
rather than starting from a single point. Secondly, 1t mani-
pulates the representation of the variables rather than the
variables themselves. Moreover, importance is given to a
set of operators that help in generating the new set of
solutions, called individuals, from the old set. Hence, in a
single run more than one solution 1s possible in this
approach.

Genetic algorithms are generally able to find good solu-
tions in reasonable amounts of time, but as they are
applied to larger and complex problems like multiple
sequence alignment there is an increase 1n the time
required to find good alignments. Their effectiveness 1s
determined largely by the size of their population. As the
population size increases, the genetic algorithm has a
better chance of finding the global solutions, but the com-
putation cost also increases as a function of the population
size. Many variations on traditional genetic algorithms
have been devised to address this limitation and one of the
promising choices is to use parallel implementation.

4. Island parallel genetic algorithm for
sequence alignment

Methods that are used to parallelize genetic algorithm
result only in speed-up without any qualitative improve-
ments to the solutions. Parallel genetic algorithm with
isolated subpopulations or the island model 1s used to
gain better solutions'". In this approach, independent sub-
populations of individuals with their own fitness functions

[ ? e~ 0
inttialize P(1)

evaluate P(1n)

‘ foreach generation
te—1t+ 1
; select P(t + 1) trom P(1)

recombine P(t + 1)

‘ evaluate P(r + 1)

endfor

Figure 2. Simple genetic algorithm.
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evolve in isolation, except for an exchange of some indi-
viduals (migration). A set of n individuals (problem solu-
tions) is assigned to each of the N processors, for a total
population size of n x N. The set assigned to each proce-
ssor is its subpopulation. The processors are connected by
an interconnection network with a ring topology.

Initial subpopulations consist of randomly constructed
alignments created at each processor. Each processor,
disjointly and in parallel, executes the sequential genetic
algorithm on its subpopulation for a certain number of
generations. Afterwards, each subpopulation exchanges a
specific number of individuals (migrants) with its neigh-
bours. We exchange the individuals themselves, 1.e. the
migrants are removed from one subpopulation and added
to another. Hence the size of the population remains the
same after migration. The process continues with the
separate evolution of each subpopulation for a certamn
number of generations. At the end of the process the best
individual that exists constitutes the final alignment.

4.1 Characteristics of island parallel genetic
algorithm |

4.1.1 Initial subpopulation: Initial subpopulation at
each processor is created randomly. It consists of a set of
alignments containing only terminal gaps. Alignments are
created by choosing a random offset for all the sequences
and then moving each sequence to the right according to

its offset. To have a same length, sequences are padded
with null signs.

4.1.2 Fitness function. The fitness of each individual
in a subpopulation is calculated by scoring each alignment
according to weighted sums of pairs objective function.
The overall alignment cost is calculated by adding a sub-
stitution cost and gap cost to each pair of aligned residues
in each column of the alignment with their weights. The
cost function includes gap opening and extension penal-
ties. We use pam250 (ref. 12) substitution matrix and
natural affine gap penalties for calculating cost func-
tion' ™', Since our purpose is to minimize the objective
function, the alienment scores are inverted for the fitness
calculation.

4.1.3 Selection: All the individuals are ranked accor-
ding to their fitness function, and the new children replace
the weakest individuals in the old population. An overlap-
ping generation technique is used where half of the popula-
tion will survive unchanged, the other half will be replaced by
the children during each generation". The expected off-
spring value of an individual is dertved from its fitness
and used as the probability for each individual to be cho-
sen as a parent. Parents are selected for breeding accord-
ing to their expected offspring value in a spinning wheel.

4.1.4 Genetic operators.  Crossover. Crossovers are 1es-
ponsible for combining two different alignments into a
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new one. Two different types of crossover, one-point and
uniform crossovers are implemented. Two parent align-
ments are combined through a single exchange in. one-
point crossover. The first parent is cut straight at a
randomly chosen position. The second one is tailored so
that the right piece can be joined to the left piece of the
first parent and vice versa. Any vacant space that appears
at the junction point for alignment is filled with null signs.
This filling of null signs at the junction point forces to
design an operator that combines the properties of tradi-
tional crossover and those of mutation. The best one out
of the two children produced in this way is retained in the
population. We designed the uniform crossover to pro-
mote multiple exchanges between areas of homology.
Consistent positions in an alignment are identified first in
both the parents. Two positions are said to be consistent if
each column contains the same residue or a null coming
from the same gap. Blocks between consistent positions
are swapped to create a new alignment.

Gap insertion: While the crossovers combine patterns,
there is still a need to generate these patterns. Gap inser-
tion operator extends alignment by inserting gaps. The
sequences are split into two groups based on an estimated
phylogenefic tree. A gap of randomly chosen length is
inserted in each of the sequences of one group at a ran-
domly chosen position. A gap of same length is also
inserted into all of the sequences of the second group at a
position that has maximum distance from the first gap
insertion,

Block shuffling: Generating an optimal arrangement
atter a gap insertion can often be a matter of shifting a gap
to the left or to the right. Thus, the block shuffling opera-
tor is used to move blocks of gaps or residues within an
alignment. A set of overlapping stretches of residues from
one or more sequences is called a block of residues. Each
subsequence can be of different length but all subse-
quences must overlap. A block is chosen first by selecting
one residue or gap posttion from the alignment and moved
to a specified position.

Block searching: A set of operators including cross-
overs, gap insertion and block shuffling 1s able to create
any arrangement needed for the correct alignment, but 1t is
also bound to lose a lot of time. Therefore, a crude
method of searching for a block 1s implemented in this
operator. Given a substring in one of the sequences, this
operator finds the block to which it may belong in an
alignment. A substring of random length at a random
position in one of the sequences 1s compared with all sub-
strings of the same length of other sequences. The best
match is selected and added to the initial string forming a
small profile. Then the best match is located and added to
the profile for the remaining sequences. This process
continues until a match has been identilied in all the
sequences.
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S. Implementation and results

The algorithm has been implemented on PARAM 10000,
a parallel machine with forty nodes of symmetric multiple
processors (SUN Ultra450) each having four CPUs run-
ning at 300 MHz and a shared memory of 512 MB. The
program is written in C using Parallel Virtual Machine
(PVM) library for communication across the processes.
The results presented here have been achieved with the

machines running their normal daily loads in addition to
this code.

5.1 Comparison of island parallel genetic algorithm
with other algorithms

A set of four test cases were chosen from Pascarella
structural alignment data bank'®, We compare the results
of iPGA with the best-known results of other algorithms
for multiple molecular sequence alignment. The iPGA
was executed 45 times per test case with varying para-
meters. During tnittalization of the program, all the opera-
tors have the same probability of being used. An auto-
matic procedure, dynamic scheduling is used for the
scheduling of operators. In this model, an operator has a
probability of being used that is the function of the effi-
ciency it has recently displayed at improving alignments'’.

Table 1 presents the best-ever-seen results for all algo-
rithms. Here, the alignment score represents the objective
function. The scores obtained from iPGA are better than
the sequential genetic, algorithm (SGA) and ClustalW, an
alternative method. All executions of iPGA were based on
arbitrary 1nitializations of the random number generator.
Due to the stochastic nature of genetic algorithms, the
best-ever-seen results of iIPGA were not achieved in all
executions. However, we should note that solutions equal
to the best-ever-seen results were obtained in at least 50%
of the individual iPGA executions.

5.2 [Investigation on migration parameters

The iPGA alternates the maintenance of the subpopula-
tions isolated 1n different environments with the introduc-
tton of individuals to a new environment. Exchanging
individuals between subpopulations, 1.e. wnugration,
will alter the fitness values of the individuals within the

Table 1. Comparison of iPGA with ClustalW and SGA
ClustalW SGA iPGA
Test case  Nseq  Length Score Score Score
Acprot 16 209 18239760 18052396 17903996
Globin A 15 169 10898878 10857787 10832517
Globin B 17 69 14050372 140306906 13930367
Sprot 15 292 21284220 20058754 20915316
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subpopulation and introduce new competitors. Migration,
of course. is based on various parameters such as migra-
tion frequency, number of migrants and migrant selection
strategy. To understand the specific effects of these para-
meters we have performed several experiments. All the
results presented in Table 2 are normalized as the per-
centage exceeding the best score, with the percentage
averaged over five runs. For comparison, we also applied
a SGA on the total population size. In all the experiments,
the iPGA and SGA were executed for the same number of
function evaluations, i.e. the product of number of itera-
tions and the total population size was kept constant.

Table 2.

Ml . nlben i oy

The influence of migration interval for different number
of migrants is investigated. The migrants were chosen
randomly in a subpopulation and sent to their right neigh-
bour on a uni-directional ring topology. Table 2 shows
that the sequential approach is outperformed by all para-
ilel variations when averaged over all test cases consi-
dered. Thus, splitting of the total population size into
parallel evolving subpopulations increases the probability
that at least one of these subpopulations will evolve
towards a better result. Table 2 also shows that a limited
migration between the subpopulations further enhances
the advantages of the iPGA. Two migrants to each neigh-

Alignment score with differcnt numbers of migrants and migration interval

W.—_—_——-_ﬂ‘m

25 gencrations

el

o

Migration interval

50 generations 75 generations

Migrants Migrants Migrants
Test case SCGA R 4 § 4 6 2 4 6
ACProf 0.620  (0.433 0.312 0.33% 0.538 0.463 0.385 0.605 0.597 0.522
Globin A 0.068 (030 ().052 0.058 0.073 0.019 0.068 0.079 0.034 0.096
Globin B (464  0.508 (0.447 0411 0.512 0.622 0.332 0.405 0.307 0.491
Sprot 0959  0.337 0.379 0.446 0.502 0.554 0.552 0.550 0.575 0.411
Average ().528  (.337 ().298 0.313 0.406 0.415 (0.334 0.500 0.378 0.380
C SGA 1 00 64 56 59 77 79 63 95 72 72

e

All results are averaged over five runs and normahized as a percentage exceeding the best-known score in Table 1. Thus smaller the

value. better the average altgnment score,
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bour in the space of 25 generations turned out to be the
best parameters when averaged over all the test cases. On
the other hand, msufficient migration (migration interval
75) tends towards the isolated parallel approach without
any migration.

Figure 3 shows the convergence behaviour of the best
individuals in each of the simultaneously evolving sub-
populations for Sprot. All the results were obtained with
nine subpopulations of size 50. Five runs with nine sub-
populations each are plotted, i.e. 45 curves. The plot indi-
cates the importance of migration to avoid premature
convergence by inserting new individuals into a stagna-
ting subpopulation.

6. Conclusions

An iPGA has been presented for multiple molecular
sequence alignment problem. It has been shown that for
all the test cases iPGA outperforms the greedy progre-
ssive alignment approach implemented in ClustalW. The
results also show that when applied to multiple molecular
alignment problem, the 1PGA-based on concepts ot iso-
lated evolving populations consistently performs better
than a SGA. A set of experiments has been performed in
order to evaluate the effects of migration parameters on the
iPGA. As a result, four migrants in the space of 25 genera-
tions lead heuristically to the best results. Asynchronous
implementation using multi-form subpopulations for multi-
ple molecular sequence alignment problem is in progress.
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