SPECIAL SECTION: COMPUTATIONAL SCIENCE

iy

SURVEYS

Three-dimensional computer graphics

architecture

Tulika Mitra* and Tzi-cker Chiueh

Computer Scicnce Department, State University of New York at Stony Brook, Stony Brook, NY 11794-4400, USA

Three-dimensional (3D) computer graphics hardware
has emerged as an integral part of mainstream desk-
top PC systems. The aim of this paper is to describe
the 3D graphics architecture at a level accessible to the
general computational science community. We start
with the generic 3D graphics rendering algorithm, the
computational requirements of each of its steps, and
the basic architectural features of 3D graphics proces-
sors. Then we survey the architectural features that
have been implemented in or proposed for state-of-
the-art graphics processors at the processor and sys-
tem levels to enable faster and higher-quality 3D
graphics rendering. Finally, we describe a taxonomy
of parallel 3D rendering algorithms that accelerate the

performance of 3D graphics using parallel processing.

1. Introduction

UNTIL recently, real-time three-dimensional (3D) computer
graphics was available only in very high-end machines
from Silicon Graphics Inc. In the last few years however,
the PC industry has seen an unprecedented growth of
cost-effective 3D graphics accelerators. Because a signifi-
cant amount of industrial research effort has been 1nvested
in powerful 3D graphics cards, it is predicted that the per-
formance of these accelerators will surpass the perform-
ance of SGI machines by the year 2001 (ref. 1). 3D
graphics applications place a stringent demand on the pro-
cessing power and on the data transfer bandwidth of the
memory subsystem and interconnecting buses. The growing
importance of 3D graphics applications has motivated CPU
vendors to add new instructions to the existing instruction
set architecture, and to develop higher-bandwidth memory
and system buses. In fact, the data-intensive nature of 3D
applications has been one of the primary motivations
behind the introduction of advanced Dynamic Random
Access Memory (DRAM) architectures for host memory,
and the local memory on graphics cards.

In this article, we start with the basic steps required to
render a polygon-based 3D graphics model and their asso-
ciated and bandwidth requirements. Then we examine the
major design issues in generating photo-realistic tmages
on desktop machines in rea] time, and the architectural

= = - w—— ——

*For correspondence. (e-mail: mitra@cs.sunysb.edu)

838

innovations that attempt to address these problems.
Finally, we present a taxonomy of parallel rendering algo-
rithms, which uses parallel processing hardware to render
extremely complicated 3D graphics models.

2. 3D graphics pipeline

Polygon-based 3D graphic rendering 1s the process of
converting the geometric description of a 3D model (or a
virtual world) to a photo-realistic two-dimensional image
(a 2D array of picture elements or pixels) that can be dis-
played on a computer monitor. Each pixel represents a
colour value consisting of red, green, and blue (RGB)
components. The sequence of steps involved in this con-
version forms the 3D graphics pipeline, each stage of
which can be implemented either in hardware or software.

The input to the 3D graphics pipeline is a virtual world
created by application programmers. This world/scene
consists of a mathematical representation of a set of
objects, their positions relative to each other, an optional
set of light sources, together with a viewpoint that pro-
vides a camera angle into the virtual world. Objects or
primitives are typically represented by a set of triangles
for ease of implementation. The description of the 3D
model is passed to the 3D graphics engine through a stan-
dard Application Programmer Interface (API) such as
OpenGL? or Direct 3D’. The 3D graphics pipeline itself
consists of two distinct stages: geometric transformation
and rasterization. The geometric transformation stage
maps triangles from a 3D coordinate system (object
space) to a 2D coordinate system (image space) by per-
forming a series of transformations. The computation in
this stage is mostly floating-point intensive, involving
linear algebraic operations such as matrix multiplication
and dot products. The rasterization stage converts trans-
formed triangles into pixel values to be shown on the
computer screen. This stage involves mostly integer
arithmetic, such as simple additions and comparisons. An
excellent reference to the 3D graphics pipeline can be
found in Foley et al.’.

2.1 Geometric transformation

At the input of the geometric transformation stage, each
triangle consists of three vertex coordinates, vertex
normals and other attributes such as colour. For ease of

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

- —

— i —

SPECIAL SECTION: COMPUTATIONAL SCIENCE

manipulation, vertices are represented in homogeneous
coordinates, which are quadruples of the form {x, y, z, w},
where in most cases w is 1. (The tuple {x/w, y/w, Z/w} is
the Cartesian coordinate of the homogeneous point.) The
geometric transformation stage applies a sequence of ope-
rations on the vertices of the triangle. Figure 1 shows the
seometric transformation part of a typical 3D graphics
pipeline which consists of the following stages:

2.1.1 Model and viewing transformation: Modelling
transformation positions primitives with respect to each
other, and the viewing transformation orients the resulting
set of primitives to the user viewpoint. These two trans-
formations can be combined into a single multiplication of
the homogeneous vertex coordinate by a 4 X 4 matrix,
which is implemented as 16 floating point multiplications
and 12 floating point additions. Lighting calculation, n
addition, requires the transformation of the vertex nor-
mal by a 3 X 3 inverse transformation matrix, which costs
9 floating point multiplications and 6 {floating point
additions.

2.1.2 Lighting: This stage evaluates the colour of the
vertices given the direction of light, the vertex position,
and the surface-normal vector and material characteristics
of an object’s surface. We will consider here only the
most popular shading model, called Gouraud shading,
which interpolates the colour of the three vertices across
the surface. Evaluating the colour of a vertex requires a
variable amount of computation depending on the number
of light sources and the material properties. We assume
the simplest case of a single light at infinite distance, and
the material with only ambient and diffuse coetficients.
This lighting model calculates the following equation for
each R, G, B component:

Cdiﬁu.re X Cﬁghr X (N] L) + Affﬂfc'ﬂﬂﬂ X Ah‘ghh

where Cjip and Cuypee are the light source intensity and
diffuse reflection coefficient; Ajne and A,efeciion are the
ambient light intensity and ambient light coefficient;
(N - L) is the dot product of surface-normal vector and the
direction of light vector. (N - L) is calculated only once.
However, the rest of the equation should be calculated
independently for R, G and B components for each vertex.
This requires a total of (3 +3x3=12) muitiplications
and (2 + 3 x 1 = 5) additions per vertex.

Model and _ Projection
| Viewing Lighting Transform
Transform

2.1.3 Projection transformation: This transformation
projects objects onto the screen. There are two types of
projections: (1) orthographic projection, which keeps the
original size of 3D objects and hence is useful for archi-
tectural and computer-aided design: (2) perspective pro-
jection, which produces more realistic images by making
distant objects appear smaller. Each of these transforma-
tions again involves a 4 X 4 matrix multiplication. How-
ever, as most entries in these matrices are zero, a careful

implementation requires only 6 multiplications and 3
additions.

2.1.4 Clipping: The application programmer defines a
3D viewing frustum such that only the primitives within
the frustum are projected onto the screen. This step
removes the objects that are outside the viewable area.
The algorithm requires one floating point comparison per
view-boundary plane, and thus 6 comparisons per vertex.
If a triangle is partially clipped, then the algorithm should
calculate the position of the new vertices at the inter-
section of the triangle edge and the view-boundary plane.
The number of such operations performed depends on the
actual number of triangles that cross the view-boundary
planes, which varies from one viewpoint to another.
Hence, we will not take this cost into account for our
computation requirement calculation.

2.1.5 Perspective division: If perspective transforma-
tion is applied on a homogeneous vertex, then the w value
no longer remains equal to 1. This stage divides x, y, z by
w to convert the vertex to Cartesian coordinates.

2.1.6 Viewport mapping: This step performs the final
scaling and translation to map the vertices from the pro-
jected coordinate system to the actual viewport on the
computer screen, Each vertex component 1s scaled by an
independent scale factor and offset by an independent
offset, i.e. 3 floating point multiplications and 3 floating
point addittons.

The total computation requirement to perform geometry
transformation per vertex is then 46 multiplications, 29
additions, 3 divisions, and 6 comparisons. Modern pro-
cessors can execute floating point addition, subtraction,
comparison, and multiplication operations quite fast using
pipelined execution units. Floating point division opera-
tion however, is not usually pipelined, and can take as
high as 50 floating point addition operations’ worth of
time. The tota} floating point operation requirement for a
single vertex transformation is then around 130. Today

Perspective

Clipping Division

Figure 1. Geometry transformation stage of a 31 graphics pipeline.

CURRENT SCIENCE, VOL. 78, NG. 7, {3 APRIL 2000

334

SPECIAL SECTION: COMPUTATIONAL SCIENCE

—

even a modest scene requires around 1 million vertex
transformations per second to achieve a rate of 30 frames
per second. This would translate to 130 MFlops (million
floating point operations) per second. Today's PCs have
sufficient floating point computation power and therefore

typically perform the geomctric transformation stage n
the main CPU,

~J

2.2 Rasterization

The rasterization stage comprises two steps. The scan
conversion step decomposes a triangle into a set of pix-
els. and calculates the attributes of each pixel, such as
colour, depth, alpha, and texture coordinates. The pixel
processing step performs texture mapping, depth test
and alpha blending for individual pixels. Figure 2 shows
the rasterization stace of the graphics pipeline.

There are two distinct mechanisms that are quite popu-
lar for the scan conversion step: linear interpolation
alcorithm and linear edge function algorithm. In linear
interpolation-based algorithms'", the triangle set-up step
first computes the slopes, with respect to the X-axis, for
all the attributes along each edge of the triangle. Next, the
edge processing step iterates along the edges and com-
putes the two end points of a horizontal pixel segment,
called a span. Finally, the span processing step iterates
along each span and computes the attributes for each pixel
on the span through linear interpolation (Figure 3).

In linear edge function-based algorithms’, each edge of
the triangle is defined by a linear edge function. The tri-
angle is scan converted by evaluating, at each pixel's
centre, the function for all edges, and processing only
those pixels that are inside all the edges. The attributes

Pixel Processing

‘.

—

Secan
Conversion

Alpha
Blending

—

Figure 2. Rasterization stage of a 3D graphics pipeline.

--

e

are also computed from the linear functions. Typically,
the traversal of a triangle proceeds down from a starting
point, and moves outward from the centre line®. The cen-
tre line shifts to the left or right, until it steps outside of
the triangle at any point of time (Figure 4 a). To achieve
parallelism, the trtangle may be traversed one pixelstamp
at a time, rather than pixel by pixelﬁ. A pixelstamp 1s an
array of pixels of dimension X x Y. Evaluation of edge
functions for all the pixels within a pixelstamp could start
in parallel, and only qualified pixels are sent to the
pixel processing stage. Triangle traversal visits all pixel-
stamps that are completely or partially inside the triangle
(Figure 4 D).

The rasterization stage also includes texture mapping,
which is a crucial and widely used technique that wraps a
2D texture image on the surface of a 3D object to emulate
the visual effects of complex 3D geometric details,
such as wooden surface, tiled wall, etc. Each vertex of a
texture-mapped triangle comes with a texture coordinate
that defines the part of the texture map to be applied
(refer to Figure 5). These texture coordinates are inter-
polated across the triangle surface via scan conversion.
The most popular texture mapping implementation is
based on mip-mapping’ (Figure 6), which pre-calculates
multiple reduced-resolution versions of a texture image.
Each resolution level corresponds to a particular depth.
Coarser (finer) resolution levels are used for farther
(closer) objects. For a 3D object at a given depth, the
mip-mapping algorithm chooses a pair of adjacent resolu-
tion levels of the texture image, and performs weighted
filtering of & texels (texture pixel) from these two resolu-
tion levels. This tri-linear {iltering eliminates visual dis-
continuities when different mip-map levels are applied on
the same object.

Before a pixel 1s written to the frame buifer, the ren-
dering engine needs to check whether that triangle s actu-
ally visible at that pixel, i.e. no other triangle overlaps
that pixel making it invisible. This 1s known as hidden
surface removal for opaque objects. The number of over-
Japping triangles for a pixel is called the depth complex-
ity of the pixel. The majority of graphics accelerators
achieve hidden surface removal using a depth/Z buffer,

: Edge : : :
" : : H + : :
: Slope P <o ™Span ; :
: 5 > —e ;)
: : *>—e : :
; ‘ : e : : ‘
: : ; > : :
: . *-9 . : :
Triangle Set-up Edge Processing Span Processing

Figure 3. Scan conversion of a triangle using linear interpolation algorithm.

840

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

SPECIAL SECTION: COMPUTATIONAL SCIENCE

»
=

l-"'.- -':‘1-:". P '..;..'...'. T] : : -
-"':5 []
1:::1' y : :
. a Y
- Sty

2pl

Texture Space

Image Space

Figure 5. Texture mapping of a triangle. X, Y represent the coordi-
nates of the triangle in image space. U, V represent the coordinates of
the triangle in texture space and are known as the texture coordinates.

which is an array with the same dimension as the frame
buffer. After a triangle is scan-converted into a set of
pixels, each pixel goes through the depth test. This test
compares the depth value of the current pixel against the
depth value of the pixel at the corresponding X-Y coordi-
nate of the frame buffer. If the new value is smaller, the
current pixel is closer to the viewpoint than the old pixel
and therefore the depth and colour value of the current
pixel replace the old values. Otherwise, the new pixel
values are discarded. For transparent objects, the colour
of old and new pixels is composited according to their
transparency, or alpha value. This composition 1s known
as alpha blending and requires another buffer for storing
the alpha value called the alpha buffer.

The rasterization stage is quite compute and memory
intensive. Let us consider a frame buffer with resolution
1280 x 1024 and average depth complexity for a scene
of about 3. Assuming 32-bit pixel and 30 frames/sec,
the frame buffer read bandwidth requirement will be
1280 % 1024 x 3 x 30 x 4 = 472 MB/sec. Simularly the ren-
dering engine would require Z-buffer read bandwidth of
472 MB/sec assuming 32-bit Z-buffer. If a pixel passes
the depth test, both the colour and depth information have
to be written back. Assuming 50% of the pixels pass
depth test, the bandwidth requirements are 236 MB/sec

CURRENT SCIENCE, VOL, 78, NO. 7, 10 APRIL 2000

Starting Point

Center Line

2x2 PixelStamp

A

e
. ‘A.:: “ " []

g

o
%ﬁ

'\::;
EPARE A
;]) u "'. » r :i.::

o
iy,

ayel

g X
‘-1 'q ????

4 Texels from

Lower Resolution

Weighted Level

Filtering
Pixel

4 Texels from
igher Resolution
Level

U

Figure 6. Mip-map and tri-linear filtering. Each level in the mip-map
represents a reduced resolution texture image from the previous mip-
map. Tri-linear filtering performs weighted filtering of 8 texels, 4 from
the lower resolution {evel and 4 from the higher resolution level.

for frame buffer write and 225 MB/sec for Z-buftfer write.
Finally, each pixel requires 8 texels to perform tri-hinear
filtering. Even assuming an aggressive texture cache
that stores the recently accessed texels, around 2.5 texel
access per pixel are required, which translates to
1280 % 1024 x 3 x 30 x 2.5 x2 =590 MB/sec of texture
memory bandwidth (assuming each texel i1s 16-bit).

Figures 7 and 8 show the triangle and pixel processing
requirement per frame for Viewperf benchmarks®, and
Ficure 9 shows the texture bandwidth requirement for
some sample applications. A more detailed compute
and bandwidth requirement of the rendering stages tor
different real-world applications can be found 1n rets
9-11.

Theoretically, the entire 3D graphics pipeline can be
implemented in software. The geometry transformation
stape is extremcly floating point intensive, which was
beyond the capability of general purpose processors even
a few years ago. Today however, with processors having
peak performance of around 400 MUlops/sec, the host
CPU is capable of handling the load. The pixel-related

8-

SPECIAL SECTION: COMPUTATIONAL SCIENCE

rasterization operations, on the other hand, require tre-
mendous memory bandwidth to process around 100 million
pixels/sec. It is imperative that a separate hardware accele-
rator be dedicated to rasterization. Hence, two distinct
classes of graphics architectures have been implemented:
(1) combined geometry processor and rasterizer, the
prime examples being RealityEngine'* and InfiniteReal-
ity * from SGI; (2) host CPU-based geometry processing
and dedicated hardware accelerator for rasterization.
Almost all of today’s low-end 3D graphics accelerators

Totai Triangles

L
, -
#tvﬂﬂﬂﬂﬂﬁ#rnnﬂnr T gy o P A oy W Sy wowr i g e, A A
-y, ! ‘

p

LI N N B

v,

. \ o
-"'-ir -!- *

0 20 40 60 80 100
Frame Number

Figure 7. Total number of triangles processed by the rasterization
engine at different frames or viewangles for various 3D applications.

Frame Number

Figure 8. Total number of pixels processed by the rasterization en-
gine at different frames or viewangles for various 3D applications.

842

—— it . — S tulte o S

belong to the second class. In this case, the transformed
geometry (vertex position, colour, and texture coordi-
nates), as well as the texture images are transferred over a
high-speed system bus such as PCI (Peripheral Compo-
nents Interface) to the rasterization hardware accelerator.
A major -design 1ssue for rasterization-only graphics
accelerators is how to use the system bus bandwidth
efficiently.

3. Architectural innovations

To scale up the performance of the generic 3D graphics
architecture described in the previous section, the follow-
ing architectural 1ssues need to be resolved:

e Although in theory state-of-the-art processors seem to
have sufficient raw floating-point computation power
to support geometric transformation at interactive
frame rates, in practice the CPUs are lagging behind
the rasterization performance of the 3D graphics cards.
Therefore higher floating-point performance is essen-
tial to achieve faster frame rates with better rendering
quality. |

e The data transfer bandwidth between the CPU, which
performs geometric transformation, and the 3D graph-
ics card, which performs rasterization, plays a crucial
role in the extent 10 which the entire 3D graphics pipe-
line can be sped up. The heavy use of texture map in
modern 3D applications further exacerbates the band-
width problem,

¢ The memory access performance in the scan conver-
sion process has a dominating impact on the overall
rasterization performance. Improving the rasterization
algorithm’s data access locality is pivotal to the graph-
ics card’s performance.

=t
z

Textare Memory Bandwidth
o
=

Iy
- ay & h‘.;"‘li‘

Figure 9. Total texture memory bandwidth in MBytes for different
frames.

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

- e,
R i

SPECIAL SECTION: COMPUTATIONAL SCIENCE

The following subsections describe architectural tech-
niques that have been proposed and implemented to
address these 1ssues.

3.1 Streaming SIMD extensions to instruction sef

Many current microprocessors have added Single Instruc-
tion Multiple Data (SIMD) type instructions to accelerate
integer processing for media applications such as audio,
video and image processing. This includes Intel’s Multi-
media Extensions (MMX), HP’s Multimedia Architectural
Extensions (MAX-2), Sun Microsystem’s Visual Instruc-
tion Set (VIS), etc. However, the geometry processing
stage of the 3D graphics pipeline is based on floating
point data types. To exploit the parallelism in the geo-
metry processing stage, Intel, AMD and others have
recently added floating point SIMD instructions' ' to the
instruction set. The main idea behind these extensions Is
that the geometry processing requires 32-bit floating point
data types, whereas the floating point paths (registers and
ALUs) are 64-bit in width in most modern processors.
Because vertex processing is inherently parallelizable,
SIMD instructions allow two verteX-processing operations
to be performed simultaneously using a single floating-
point instruction, with each vertex using half of the 64-bit
data path. Yang, Sano and Lebeck'® showed that SIMD
instructions can improve the geometry transformation
performance by 20 to 30%.

3.2 Accelerated grapnics pori-

Figure 10 shows a high-level view of the components of a
PC desktop system. It consists of the processor, main
memory, the north bridge, PCI-based devices and various
interconnecting buses. The north bridge has the memory
controller and provides connections among different sys-
tem components. The main processor fetches the 3D
model from main memory, performs geometry transfor-
mation, and writes it back to the main memory. The
graphics accelerator sitting on the PCI bus uses DMA
(Direct Memory Access) {0 retrieve that data from the
main memory and then performs rasterization. One major
bottleneck of PC-based systems is the transfer bandwidth
over the PCI bus, which connects the system meniory to
the local memory of the graphics accelerator'. The CPU
needs 1o transfer geometry data, graphics commands as
well as texture data to the graphics accelerator. Typically,
the geometry information associated with a vertex is about
32 bytes', including the vertex coordinates, colour, and
texture coordinates, i.e. 32 MB/sec for 1 million vertices.
This information crosses the processor bus two time {once
for reading and once for writing in the geometry transfor-
mation stage), the PCI bus once (transferring data to the
graphics card), and the memory bus three times (in all the

CURRENT SCIENCE, YOL. 78, NO_7, 10 APRIL 2000

above cases). In addition, a large amount of texture data
need to be transferred over the PCI bus as well. The peak
PCI bandwidth of 32-bit, 33-MHz PCI bus is 132 MB/sec,
which is still not quite sufficient. To solve this problem,
Intel introduced a new bus specification, called Accelerated
Graphics Port (AGP)’. AGP connects the graphics acce-

- lerator exclusively to the main memory subsystem (refer

to Figure 11). AGP has four main advantages over PCI.-

1. Reduction of load on PCI: The primary advantage of
AGP is that it eliminates the graphics-related bandwidth
requirement from the PCI bus by transferring data
from the main memory to the graphics card over a dedt-
cated bus.

2. Higher peak bandwidth: AGP 2X (32 bit data path at
66 MHz) transfers data on both edges of the clock,
thereby achieving a peak bandwidth of 528 MB/sec. AGP
4X has a bandwidth of {GB/sec.

3. Higher sustainable bandwidth: AGP supports pipe-
lining of requests, 1.e. overlapping of access time of
request n with the issue of requests 2 + 1, n + 2 and so on.
It also does sidebanding which provides extra address
lines to issue new requests while the main data/address
lines are transferring the data corresponding to previous
requests. These two features makes it more likely for AGP
to achieve a sustained bandwidth that is much closer to its
peak bandwidth.

4. Direct memory execute: The amount of local memory
present in the graphics accelerator is limted. However, to
obtain more realistic images, applications use more and
more high resolution textures, all of which cannot fit into
the local memory. Hence, the graphics drniver needs to
perform texture memory management that keeps track of

Pmcessor Bus
Memory
Bus

Main Memory K North Bridge

PCI Devices

Figure 100 High-level view of the components of a PCLbased gra-
phiucs subsystem,

843

SPECTAL SECTION: COMPUTATIONAL SCIENCE

the texturcs present in the local memory and downloads
the required textures before they are used. This can intro-
duce stgnificant latency as the rendering engine waits for
the complete mip-map of the texture image to be down-
loaded over the PCI/AGP bus. AGP provided a new fea-
ture called direct memory execute (DIME) that allows
the graphics accelerator to directly address main system
memory over the AGP bus. A translation table in the AGP
controller, similar to the virtual to physical address trans-
lation table in the CPU, allows non-consecutive memory
pages to appear as a single contiguous address space to
the accelerator. This way the graphics accelerator can
cache the heavily used textures in the local memory, and
access the comparatively little used ones directly from the
system memory.

3.3 Bucket rendering

Tradittonal rendering requires random access to the entire
frame buffer, and it is not very cost-effective to provide a
large high-bandwidth frame buffer. An interesting archi-
tectural 1dea that addresses this problem is bucket
rendering. Bucket rendering is a technique where the
screen-space 1s partitioned into tiles (also called chunks),
and all the primitives of the scene are sorted into buckets,
where each bucket contains the primitives that intersect
with the corresponding tile. This architecture renders the
scene one tile/bucket at a time, thereby reusing the Z-
buffer, alpha-buffer as well as other necessary buffers for
storing the results of intermediate rendering. At the end,
all the tiles are collected together to form the final image.

Processor

Processor Bus

Memory AGP
Graphics
Main Memory - North Bridge K Accelerator

PCI

PCl Devices

Figure 11. High-level view of the components of an AGP-based
graphics subsystem,

844

Bucket rendering has been implemented in Pixel-Planes §
(ref. 18), PixelFlow'’, Talisman® and finally commer-
cially available PowerVR from NEC/VideoLogic. The
matn advantages of bucket rendering are the following:

* Since only one tile worth of rasterization buffer is
required as opposed to a full-screen buffer, it is possi-
ble to use more bits per buffer entry to support more
advanced rendering techniques such as oversampling or
anti-ahasing, which rasterizes each pixel at a higher
resolution and then down-samples the result to the
required resolution,

* Titled architecture matches very well with the emerg-
ing embedded DRAM process that can provide small
on-chip memory and high memory access bandwidth.

The main disadvantages of this architecture are

i. It requires an additional pipeline stage to sort tri-
angles into buckets, thus increasing the total rendering
latency.

2. Redundant work is performed because large primitives
may overlap with multiple tiles,

3.4 Composited image layers: Talisman

Microsoft introduced Talisman architecture in 1996, that
comprised several independent ideas. However, the key
distinguishing feature of Talisman is composited image
layer trendering® that exploits the frame-to-frame cohe-
rence for the first time. In traditional architecture, all the
primitives are rendered in each frame even though there is
a great deal of coherence between consecutive frames.
Instead, Talisman renders each primitive on a separate
image surface. All the image surfaces are then composited
together to form the final image. In the next frame, the
image for a primitive ts transformed in the screen-space,
given the transformation matrices in the object-space. If
the error introduced by image-space transformation is
below a threshold, the transformed image can be used as
the final result of rendering. This architecture relies on the
fact that image-space transformation is much less expen-
sive compared to object-space transformation, and image
layer composition can be performed more efficiently. The
main disadvantage of this architecture is the complexity
and gate count, and the incompatibility problem with tra-
ditional APIs like OpenGL. As a result, no commercial
attempt has been made so far to implement Talisman
architecture.

4. Parallel architecture

The 3D graphics pipeline is computation intensive, but is
quite amenable to parallel implementation both in the
object space as well as in the image space. Exploiting the
graphics pipeline’s parallelism can signiticantly reduce

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

SPECIAL SECTION: COMPUTATIONAL SCIENCE

the total polygon rendering time. A considerable amount
of research effort has been invested so far to design and
implement various efficient parallel polygon rendering
engines. In this section, we briefly describe different
classes of parallelization techniques. Because the funda-
mental issue in 3D rendering is sorting the geometric
primitives with respect to a given viewpoint, the paralleli-
zation strategies for polygon rendering can be classified
as sort-first, sort-middle and sort-last depending on
where the sorting operation is performed'’, which are
illustrated in Figure 12.

In the sort-first strategy®', the Image Sspace 1S parti-
tioned into regions and each processor is responsible for
all the rendering calculations (both geometry and rasteri-
zation) in the region to which it is assigned. The screen
space bounding box of each 3D primitive is calculated by
performing just enough transformations. Every 3D primi-
tive 1s then distributed to the processors that are responsi-
ble for the image regions with which the bounding box
overlaps. One primitive can be sent to multiple proce-
ssors. From this point on, the set of 3D primitives in each
processor goes through geometric transformation and
rasterization completely independent of primitives in
other processors. Finally, the image regions from the pro-
cessors are simply combined together to form the final
rendered 1mage. The sort-first architecture has received
the least attention so far because of the load imbalance
problem 1in transformation and rasterization stage. How-
ever, as Mueller”' pointed out, the sort-first architecture
can easily exploit the frame-to-frame coherence and he
has proposed a new adaptive algorithm to achieve better
load balancing.

In the sort-middle strategy®®, the image space is again
partitioned and each processor 1s responsible for one
image region. 3D primitives are first transformed and then
distributed to different processors based on the trans-
formed X and Y coordinates of the primitives. Again a
primitive i1s sent to multiple processors if it crosses the
image region boundaries. Atter distribution, each proce-
ssor performs rasterization on the transtformed primitives
independent of one another to produce a sub-image for
the associated image region. The sub-images are then

combined to form the final projection image. Sort-middle
seems to be the most natural architecture and has
been implemented both in hardware and software. Both
InfiniteReality'” and RealityEngine Graphics'® have been
implemented using sort-middle strategy. The main dis-
advantages of the sort-middle architecture are the load
imbalance in the rasterization stage and the communication
cost due to redistribution of primitives after transfor-
mation. Crockett and Orloff ** proposed a static scan-line-
based scheme for image space partitioning. Whitman®
suggested adaptive load-balancing schemes for sort-
middle architecture, while Ellsworth®® took advantage
of frame-to-frame coherence to achieve better load-
balancing.

The sort-last strategy partitions the 3D input model in
the beginning of the rendering pipeline without taking into
account the viewpoint or object coordinates, performs
geometric transformation and rasterization on each parti-
tion independently to produce a partial image, and finally
composites the partial images according to the depth
value of each image pixel. Because of its simplicity, the
sort-last approach has been implemented in several sys-
tems, including PixelFlow'” from University of North
Carolina, which uses a high-speed combining network to
composite sub-images. The performance of the sort-last
strategy depends critically on the composition stage.
Various methods have been proposed so far to perform
the composition. The simplest method is to send the sub-
images to a single compositing processor'". Other schemes
proposed are binary tree composition™, binary-swap
composition®®?’ and parallel pipeline composition™ .
Mitra and Chiueh® showed that all previously proposed
sub-image compositing methods can be unified in a single
framework.

In general, in sort-last, a processor sends all the pixels
of the relevant image space to another processor. This 1s
known as sort-last-full technique®. Cox and Hanrahan”’
pointed out that it is sufficient to send only the ‘active’
pixels of the image space which is termed as sort-last-
sparse. The trade-off between the two methods 1s the
communication overhead versus extra processing required
to encode the ‘active’ pixels.

Sort Fret Sort Last
Figure 12. Sort-first, sort-middle, and sort-last parallel rendering archntectures, The main ddterence
between the architectures is where the distribution/sorting of prisnitives take place. G represeots the
geoinetric transformation engine and R represents the rasterization engine,

CURRENT SCIENCE, VOI.. 78, NO. 7, 10 APRIL, 2000

SPECIAL SECTIQN: COMPUTATIONAL SCIENCE

Until recently, all the parallel rendering engines were
implemented either as dedicated ASIC, such as Reality-
Engine and InfiniteReality, or were implemented on
massively parallel message passing or distributed shared
memory machines such as Intel Paragon. Currently how-
ever, advances in the processor and graphics accelerator
technology, as well as the emergence of gigabit local net-
work technology, such as Myrinet, have made it possible
to implement high performance 3D graphics engines on a
cluster of workstations each of which is equipped with a
low-cost 3D graphics card’*?’. The basic parallelization
strategies will remain the same for these architectures.
However, the loosely coupled network topology may
require different kinds of load balancing and composition
algorithms.

5. Conclusion

A unique characteristic of 3D graphic applications is that
there is no end to the addition of new features to the stan-
dard graphics pipeline. Unlike microprocessors, 3D
graphics requires both advances in performance, t.e. more
triangles and more pixels per second as well as new and
improved techniques that deliver more realistic image and
cinematic effects. Engineering and scientific 3D applica-
tions such as Computer Aided Design (CAD) and Com-
putational Fluid Dynamics (CFD) applications as well as
entertainment applications such as computer games and
animated movies, all require higher-quality rendered
images at a faster rate, thus placing an increasing demand
on the triangle and pixel rate. Therefore, we expect that
3D graphics architecture will remain a challenging field in
the foreseeable future and thus has abundant room for
further algorithmic and architectural innovation.

. Kirk, D., in Proc. of 13th ACM SIGGRAPH/Eurographics
Workshop on Graphics Hardware, http://www.merl.com/hwws98/
presentations/ kirk/index.htmi, Keynote address, 1998, pp. 11-13,

2. Neider, 1., Davis, T. and Woo, M., Open GL Programming Guide,
Addison-Wesley, 1993.

3. Microsoft Corporation, http://www.microsoft.com/directx/overview/
d3d/default.asp, 1996.

4. Foley, J. D., vanDam, A., Feiner, S. K., Hughes, J. F. and Phillips,
R. L., Computer Graphics: Principles and Practice, Addison-
Wesley 1990, 2nd edn.

5. Fuchs, H,, et ¢l in Proc. of the 12th Annual ACM Conference on
Computer Graphics (SIGGRAPH), 1985.

6. Pineda, 1., in Proc. of the 15th Annual ACM Conference on Com-
puter Graphics (SIGGRAPH), 1988, pp. 17-20.

846

7.

B.

9.

10,

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21,
22,
23.
24.
23.
26.
27.
28.
29.
30.

31.

32.

33.

i ey W Sl

Williams, L., in Proc. of the 10th Annual ACM Conference on
Computer Graphics (SIGGRAPH), 1933.

OpenGL Performance Characterization Group, http://www .spec.org/
gpc/ope.static/opcview. htm,

Dunwoody, J. C. and Linton, M. A,, in Proc. of the ACM Sympo-
sium on Interactive 3D Graphics, 1990, pp. 155-163.

Chiueh, T. and Lin, W., in Proc. of the 12th ACM SIGGRAPH/
Eurographics Workshop on Graphics Hardware, 1997, pp. 17-24.
Mitra, T. and Chiueh, T., in Proc. of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture (MICRO), 1999,
pp. 62-71.

Akeley, K., in Proc. of the 20th ACM Annual Conference on
Computer Graphics (SIGGRAPH), 1993, pp. 109-116.

Montrym, J. S., Baum, D. R, Dignam, D. L. and Migdal, C. J, in
Proc. of the 24th Annual ACM Conference on Computer Graphics
(SIGGRAFPH), 1997, pp. 293-302.

Intel Corporation, http://developer.intel.com/design/PentiumliVf
manuals/, 1999.

Advanced Micro Devices, Inc., http://www.amd.com/products/cpg/
3dnow/inside.html.

Yang, C., Sano, B. and Lebeck, A. R,, in Proc. of the 31st Annual

ACM/IEEE International Symposium on Microarchitecture, 1998,
pp. 14-24.

Intel Corporation, http://www.intel.com/technology/agp/agp_tndex.htm,
1998.

Fuchs, H., et al. in Proc. of the 16th Annual ACM Conference on
Computer Graphics (SIGGRAPH), 1989, pp. 79-88.

Molnar, S., Eyles, J. and Poulton, J., in Proc. of the 16th Annual
ACM Conference on Computer Graphics (SIGGRAFPH), 1992, pp.
231-240.

Torborg, J. and Kajiya, J. T., in Proc. of the 23rd Annual ACM
Conference on Computer Graphics (SIGGRAPH), 1996, pp. 353-
363.

Mueller, C., in Proc of the ACM Symposium on Interactive 3D
Graphics, 1995, pp. 75-84.

Crockett, T. W. and Orloff, T., JEEE Parallel Distributed Tech:
Sys. Appl., 1994, 2, 17-28.

Whitman, S., [EEE Comput. Graphics Appl., 1994, 14, 4148,
Ellsworth, D., IEEE Comput. Graphics Appl., 1994, 14, 33-40.
Shaw, C., Green, M. and Schaeffer, J., Advance in Compuler
Graphics Hardware, I, 1991.

Ma, K., Painter, J. S., Hansen, C. D. and Krogh, M. F., [EEE
Comput. Graphics Appl., 1994, 14, 59-68.

Karia, R. J., in Proc. of IEEE Scalable High Performance Com-
puting Conference, 1994, pp. 252-258.

Lee, T., Raghavendra, C. S. and Nicholas, J. B., IEEE Trans. Vis.
Comput. Graphics, 1996, 2, 202-217.

Mitra, T. and Chiueh, T., in Proc. of the 6th IEEE International
Conference on Parallel and Distributed System, 1998.

Molnar, S., Cox, M., Ellsworth, D. and Fuchs, H., [EEE Comput.
Graphics Appl., 1994, 14, 23-32.

Cox, M. and Hanrahan, P., IEEE Parallel Distributed Technology:
Syst. Appl., 1994, 2.

Samanta, R. and others, in Proc¢. of the 14th ACM SIGGRAPH/
Eurographics Workshop on Graphics Hardware, 1999, pp. 107-
116.

Experimental Computer Systems Lab, Department of Computer

Science, SUNY at Stony Brook, http://www.ecsl.cs.sunysb.edu/
sunder.html.

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

