SPECIAL SECTION: COMPUTATIONAL SCIENCE

TUTORIALS

Portable parallel programming on

emerging platforms

Guy Delamarter’, Sandhya Dwarkadas*”, Adam Frank' and Robert Stets*

*Department of Computer Science and 1‘Dfs];r;:artmf:,nt of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0226, USA

S

Clusters of symmetric shared memory multiprocessors
(SMPs) are fast becoming a highly available platform
for parallel computing. There is a need for a uniform
programming paradigm that allows users to transpa-
rently extend parallelism across multiple SMP nodes.
A shared memory paradigm leverages the available
hardware to handle sharing within an SMP, 1n addi-
tion to providing programming ease. Software distni-
buted shared memory systems support the illusion of
shared memory across the cluster via a software run-
time layer between the application and the hardware.
This approach can potentially provide a cost-effective
alternative to larger hardware shared memory systems
for executing certain classes of workloads. We des-
cribe here one such system and discuss 1ts interface,
performance and portability through an example real-
world application from the scientific domain.

by -

1. Introduction

THE paradigm for high performance computing 1s under-
going a fundamental transition. At one time, computa-
tional scientists requiring access to the most advanced
platforms were dependent on large centralized super-
computer centers. These centers had one or more large,
expensive machines (e.g. a Cray-T90) along with support
staff and maintenance infrastructure. In the mid-1990s,
advances in parallel computing along with changes in the
computing industry opened new opportunities in terms of
a shift to more accessible platforms (e.g. an Origin 2000
or an IBM SP2). These machines, however, remain pro-
hibitively expensive for many smaller groups of users. In
addition, for portability reasons, users tend to avoid a
message passing programming model (such as MPI' or
PVM?), requiring considerable programmer effort in
terms of distributing the work and communicating the data
to participating processes appropriately.

Recent technological advances have resulted 1n symmet-
ric multiprocessors (SMPs) and low-latency, high-
bandwidth system-area networks (SANs) becoming
commodity commercial items. Clusters consisting of
SMPs connected by SANs are now widely available. Har-

L o - ——

YFor correspondence. (e-mail: sandhya@cs.rochester.edu)

CURRENT SCIENCE, VOL, 78, NO. 7, 10 APRIL 2000

nessing their power for parallel computing can be done
with no additional hardware cost. Such platforms, how-
ever, provide multiple communication paradigms in
hardware — shared memory within a node, and message
passing across nodes. There 1s a need tor a uniform pro-
cramming paradigm that allows users to extend parallet-
ism across multiple SMP nodes without requiring
reprogramiming.

The use of a shared memory paradigm leverages the
available hardware to handle sharing within an SMP, in
addition to providing programming ease. Software dis-
tributed shared memory (SDSM) systems support the 1llu-
sion of shared memory across the cluster via a software
run-time layer between the application and the hardware.
This approach can potentially provide a cost-effective
alternative to larger hardware shared memory systems for
executing certain classes of workloads.

In comparison to the traditional network of (uniproce-
ssor) workstations, a cluster of SMP nodes on a high-
performance SAN can see much lower communication
overhead. Communication within the same node can occur
through hardware shared memory, while cross-SMP
communication overhead can be ameliorated by the high
performance network. Several groups have developed
SDSM protocols that exploit low-latency networks and/or
clusters of SMPs™™®.

In this paper, we describe one representative SDSM
system, Cashmere®, which is a state-of-the-art SDSM with
performance competitive with other leading systems that
have been developed. All current general-purpose proces-
sors include hardware support to provide the illusion of a
large independent address space for each application,
normally referred to as virtual memory. Cashmere lever-
ages this available hardware support to provide entry
points to the run-time system so as to provide the illusion
of sharing. The result is a system that minimizes overhead
in the absence of sharing. Cashmere requires that app-
{ications use run-time-provided primitives to synchronize.
In addition, if a process expects to see modifications
made by another, it must synchronize with that process.
Cashmere takes advantage of this requirement in order to
optimize inter-process communication.

We demonstrate the utility of the system through one
example application - a hydrodynamics simulation code

521

SPECIAL SECTION: COMPUTATIONAL SCIENCE

called Total Variation Diminishing (TVD) from the
astrophysics domain. Our goal is to convey a sense of
the benefits of the system, as well as to indicate what the
application writer needs to know both about the applica-
tion as well as about the underlying system characteristics
in order to obtain both correct and good performance. We
also present performance results for this application on a
32-processor cluster of 4-way AlphaStation 4100 SMPs.
Our simple parallelization strategy is able to achieve up to
93% efficiency on 8 processors, and up to 62% efficiency
on 32 processors. Most importantly, the application is
able to effectively and seamlessly use more processors
than are available on a single node.

The rest of the paper is organized as follows. Section 2
describes the interface provided by the SDSM system and
illustrates its use. Section 3 provides a brief description
of the protocol, and the system characteristics that are
important to the performance and correctness of an appli-
cation. Section 4 describes TVD, our example applica-
tion, and the parallelization strategy used. Section 5
presents and analyses the application’s performance.
Finally, Section 6 presents conclusions and future direc-
tions for the work.

2. SDSM interface description

The SDSM application programming interface (API)
is a simple but powerful process-based shared memory
interface (see Figure 1 for a summary of the salient calls
in the API). At present, we support both C and Fortran
interfaces. Calls are provided for process creation and
destruction, shared memory allocation, and synchroniza-
tion. Shared memory allocation is done through a special
malloc routine, csm_malloc, in C, and through

ey

specially annotated common blocks in Fortran. All other
memory 1S private to each process. The allocated shared
memory IS globally visible to all processes.

Synchronization calls allow a programmer to make ex-
plicit any ordering constraints on accesses to shared
memory by different processes. The synchronization
primitives we provide include locks and barriers. Locks
provide mutually exclusive access to a region of code or
data. A lock acquire operation gets permission to access
the code or data, while a release operation releases the
hold of process on the code or data. Synchronization
using locks is useful when concurrent access to a particu-
lar piece of data 1s not allowed. Barriers are global syn-
chronization primitives, and ensure that all processes have
arrived at the same barrier before any process is allowed
to continue. Barriers are conceptually equivalent {o each
process performing a release followed by an acquire. The
SDSM system guarantees that at an acquire synchroniza-
tion, a process sees a consistent view of all data, which
reflects the modifications made by processes with which 1t
synchronizes.

The Cashmere SDSM API requires that a process must
synchronize with another in order to see its modifications,
using synchronization primitives from the Cashmere API.
Similarly, two accesses to the same shared memory loca-
tion by different processors where at least one is a write
must be separated by Cashmere-provided synchronization
primitives in order to guarantee ordering among the accesses.

2.1 Illustrative example

We use Jacobi, an iterative method for solving partial
differential equations, as a simple example to 1llustrate the
use of the Cashmere API. Figure 2 presents the relevant

/* Initialize Cashmere and start up the requested number of processes */

vaoid cem_init(int argce, chaxr **argv)

/* Allocate shared memory (in C) */
char *csm_malloc{unsigned size)

/* Identify shared memory {in Fortran)
common /csm_common_variable/ x

- variable can be any name */

/* Block the calling process until every other process arrives at the barrier. */

void esm_barrier (int 1d)

/* Block the calling process until it acquires the specified lock. */

void csm_lock_acgquire{int 1Qd)

/* Release the specified lock. */
void csm_lock_release (int 1d)

/* Terminate the calling process and exit gracefully */

volid csm_exit(int ret)

Figure 1.
822

Summary of important calls in the Cashmere APL

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

SPECIAL SECTION: COMPUTATIONAL SCIENCE

(Fortran) fragments of the sequential and parallel versions
of the Jacobi program. During each iteration, the program
updates the elements of a 2-dimensional matrix b with the
average of its nearest neighbours. A scratch matrix a 18
used to temporarily store the update in order to avoid
over-writing the old value before 1t is used.

Figure 2 presents only the portions of the code that
require change (other than creating and terminating the
processes with csm_init () and csm _exit ()} at the
start and end of the program). Three actions are re-
quired — partitioning the work, identifying the shared data,
and synchronizing when there are dependences on data
written by other processors. Partitioning 1s done by allo-
cating each processor roughly equal-sized bands of the
matrix (the calculations of begin and end do this using the
processor identifier (returned by csm_pid) and the num-
ber of processors used (returned by csm_num_pid)).
Matrix b is identified as shared (since a is only used as a
scratch array by each processor individualily, it need not
be shared). Synchronization is performed for this applica-
tion by inserting barriers whenever there 1s a dependence
of a read on a write to the same variable by another pro-
cessor, and vice-versa. The first barrier ensures that all

processors have read b before it is written, The second

barrier ensures that all processors will compute on the
new values of & in the next iteration.

3. Protocol description

The fundamental problem in supporting shared memory is
that of coherence — ensuring that modifications to shared
data are propagated to the multiple possible copies of the

real a{M, M), b{M, M)

do k =1, 10

= {(b{i-1,3)+b{i1+1,3)
+b(i,3-1)+b(1i,3+1)})/4

real a{(M, M),
common /csm_common_matrix/ b

begin =
end = ({M-2)*(1+csm_pid(}))}/csm_num_pid{)

data. SMPs provide hardware support for coherence. In
order to keep track of the multiple copies, memory 1s
normally managed in small units referred to as the cohe-
rence unit. This coherence unit is on the order of tens of
bytes with SMP hardware support, and sharing informa-
tion is maintained and updated in hardware for each copy
of each unit of shared data. SDSM systems must maintain
and propagate sharing information in software. SDSM
systems either use program instrumentation or existing
hardware mechanisms in general-purpose processors in
order to detect accesses to shared data. Cashmere uses the
existing virtual memory (VM) subsystem to track shared
data accesses. Since the VM subsystem manages memory
in much larger units, the minimum coherence unit for
Cashmere is therefore large (an 8 kbyte virtual memory
page on our Alpha cluster). The result 18 a system that
minimizes overhead in the absence of sharing and reduces
software overhead by minimizing the number of protocol
operations necessary to validate data. The large coherence
unit, however, has performance implications for some
applications. Data that is being accessed by two different
processors may reside on the same page, resulting in extra
communication if the application does not intend to
actively share the data (normally referred to as false
sharing). Cashmere reduces this additional overhead
through the use of a multiple-writer protocol’ that allows
concurrent modifications to the same coherence unit by
multiple processes. Unnecessary communication is only
incurred when the processes synchronize. However, if
applications are written to avoid fine-grain sharing when
possible, performance on the page-based SDSM can be
greatly improved. |

b(M, M)

({(M-2)*csm_pid{))/csm_num_pid() + 1

do k = 1, 100

= begin, end

do 3
do 1 = 2, M-1
a(i,j) = (b{(i-1,3)+b{(i+1,3)
+b(i,j-1)+b(i,j+1))/4
enddo
enddo

call csm_barrier (0)
do 3 = begin, end
do 1 =1, M
b(ifjl - a(irj)
enddo
enddo
call csm_barrier(0)

enddo

Figure 2. Sequential (left) and parallel (right) code fragments tor Jacobt,

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

§21

SFECIAL SECTION: COMPUTATIONAL SCIENCE

In Cashmere, coherence 1s implemented by having each
pace of shared memory being managed by its own single,
distinguished home node. There s also an entry in a
clobal page directory for each shared page. The home
node maintains a master copy of the page. The directory
entry contains shartng set information and home node
lacation. Cashmere currently uses an invalidate-based
coherence protocol —in other words, copies of the data
are eliminated rather than updated on a moditication.

The main protocol entry points are page faults (acce-
sses to pages in the shared address space that have been
protected as a result of an invahidation and therefore are
subsequently vectored into a user-level fault handler) and
synchronization operattons. On a page fault, the protocol
updates the sharing set information in the directory and
obtains an up-to-date copy of the page from the home
node. If the fault is due to a wnite access, the protocol will
also create a pristine copy of the page (called a twin) and
add the page to the dirty list. As an optimization in the
write fault handler, a page that is shared by only one node
is moved into exclusive mode. In this case, the twin and
dicty list operations are skipped, and the page will incur
no protocol overhead until another sharer emerges.

At a release operation, the protocol examines each page
in the dirty list and compares the page to its twin 1t order
to identify the modifications. These modifications are
collected and sent to the home node in order to update the
master copy. The protocol then downgrades permissions
on the dirty pages and sends write notices (an intimation
that the page has been modified) to all nodes in the sha-
ring set. These write notices are accumulated into a list at
the destination and processed at the node’s next acquire
operation. All pages named by write notices are tnvah-
dated as part of the acquire, resulting in a subsequent page
fault on an access.

The memory consistency model specifies when and in
what order modifications to different locations are visible
to other processors. Cashmere implements what 1s called
‘moderately’ lazy release consistency”. Simply stated, this
means that modifications are propagated (as invalidation
messages) at release operations, but need not be
incorporated until a subsequent acquire operation. In
other words, an application must synchronize in order {0
see modifications made by other processors. as has
already been mentioned in Section 2.

Cashmere is an SMP-aware protocol. The protocol
allows all data sharing within an SMP to occur through
existing hardware support for coherence in the SMP.
Pages in shared space are physically shared within a node.
Software coherence overhead is incurred only when sha-
ring spans nodes. Cashmere uses several novel techniques
to reduce synchronization requirements among processes
within the same node due to software operations, as well
as to coalesce protocol operations on behalf of a node”.

Currently, Cashmere is implemented on Compag's Tru64
Unix using a Memory Channel 11 SAN®. However, the

824

s pr— am— Jp—

system 1s implemented completely at user level and does
not rely on any specialized operating system support.
Hence, it may be easily ported to other popular operating
systems, such as Linux and Windows 2000, as well as to

other platforms with low-latency high-bandwidth commu-
nication.

4. Example application

We have implemented and evaluated a large number of
applications using Cashmere®. Here, we describe the para-
llelization of an existing hydrodynamics simulation code
used for astrophysics research that we have recently
ported to Cashmere. This particular code ts called TVD,
after a property that the main computational engine
maintains in its representation of the fluid. This code was
originally developed by Ryu et al.'” using the method des-
cribed by Harten''. It has been used to explore astrophysi-
cal problems such as the accretion flow of gas around a
mass point and adapted to investigate the nonlinear inter-
action of winds from stars with different types of surroun-
ding environments' ='*. It was written in FORTRAN-77 as
a sequential program and has been used in that form on a
variety of machines, including a Cray YMP, SGI Origin
2000, SPARC 20 and an Intel Linux box.

The code simulates the flow of fluid in a quarter meri-
dional plane of an axially symmetric region. This region 1s
eridded and represented in memory as a three-dimensional
fluid array with the indices in the first dimension repre-
senting the fluid property (mass density, components of
the momentum density and total energy density) averaged
over a finite square patch, the indices in the second
dimension representing the radius of the center of the
patch, and the indices in the third dimension representing
the altitude (Z) of the patch. Abstractly, the primary pur-
pose of the code is to set up some interaction between
winds and some initial environment, and provide snap-
shots of the fluid array periodically 1n simulated time (e.g.
every 30 years). We can take these snapshots as disk files
to a graphics program after the simulation has run, and
visualize the results as a movie, or closely investigate any
individual snapshot.

In the following, we sketch the algorithm, describe the
parallelization of this sequential application, and present
the resulting performance.

4.1 Algorithm

The fluid array is initialized at the beginning of the prog-
ram to be consistent with some situation we want to model
(e.¢. a wind with a particular speed coming from a star
with a particular mass into some environment). Once the
array is initialized, the program enters 4 loop that
repeatedly updates or evolves the fluid array over a single
time-step.

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 200(

SPEC:IAL SECTION: COMPUTATIONAL SCIENCE

L =

The first part of the loop determines how much simu-
lated time this time-step represents. That value depends
crucially on the properties in the fluid. For instance, to
keep the method numerically stable, we must make sure
that this time-step 1s short enough that no disturbance in
the fluid has a chance to cross more than a single grid cell
edge. In addition, other physical effects such as radiative
cooling and gravity from a central star place additional
upper bounds on the time-step due to the strength of the
effect in each cell. Once the least upper bound on
the time-step has been determined, the loop makes some
assumptions about the properties of the fluid just outside
the main simulated region. One possible assumption is
that 1t 1s just like the fluid adjacent to it inside the region
(transmissive boundary conditions). The loop then applies
operations that actually change the fluid values in the
fluid array. In the case that we present in the pertormance
section, the effects of radiative cooling and actual motions
of the fluid are applied in sequence, but separately. Peri-
odically, the loop writes a snapshot to disk of the fluid
array so we can visualize the computation. The loop ter-
minates the program when some total amount of simulated
time has passed.

Other checkpoint and protection operations are per-
tormed 1n the loop and in the program as a whole, but this
description should be enough to explore the paralleliza-
tion of our application.

4.2 Parallelization strategy

The primary strategy for parallelization is to split the
computations in a manner similar to that presented in
Figure 2, so that each process is responsible for its own
unique region of the fluid array. Figure 3 pictorially rep-
resents the parallelization strategy. We give each process
some interval of altitude (Z) to work upon in the array.
Given that this code is written in FORTRAN, which uses
column-major ordering, and that the altitude index is the
last one for the fluid array, this means that each process
works within a contiguous region of memory. Such an
allocation minimizes any false sharing due to the large
coherence unit among the processes. In the simulation
code, this simple splitting works very well to parallelize
the code, but there are a few cases where there is depen-
dence between regions. Such cases require synchro-
nization and communication between processes (similar
to the barriers in the illustrative example). They include:
(1) performing a global search for the least upper bound
on the time-step through all grid cells, (ii) accounting
for fluid disturbances and material passing from the
region of one process to another, and (iii) creating the
snapshot files.

To perform global searches, we simply have each pro-
cess perform a local search within its region, and report
the result to a shared array which has a slot for each pro-

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

cess. Then each process reads this array and finds the
least upper bound among them to determine the global
value. All processes must be synchronized using a barrier
call to make sure the report array is complete before
searching it.

Accounting for disturbances passing vertically through
the boundaries of a process region requires examining the
values in adjacent regions. The potential problem is that
the adjacent process may modify the values before they
can be examined. This is handled by first copying the ad-
Jacent values from the shared array to a local array (simi-
lar to the scratch array in Figure 2). Then each process is
free to update its local portion and use the *frozen’ shared
values to accommodate information from adjacent regions
in the array.

There are two possible strategies for dealing with snap-
shots of shared arrays: (1) have each process write a small
file for its portion of the array and reassemble the pieces
externally; (2) have a single process grab all of the shared
array and write a single file. To make the processing re-
quired to visualize the results of the parallel program as
much like that required for the sequential version as pos-
sible, we chose to have a single process perform the L/O.
This does result in the other processes remaining idle
while the array is communicated and the file is written,
but the snapshot occurs typically about once every 100
iterations of the primary loop. This hit in performance
appears to be acceptable for now, although it does limit
the scalability of the application.

Relatively few changes need to be made to the sequen-
tial code to allow it to run under Cashmere. In order to

Jobd_LJd_LJ.L. :
||||l||lamhen1 BEENE
1YY Py P 1T-rI-ra-
JoLdous vy environment s L Ly
Illllllllllllllllll
NI CAT YT YOI YT R Y Y Y
dobdab ol dobdobdobdob b dabd .
I+ 1 0V F 3 0 0 0 0 0B 0 00y) 11
il 2 R Tl b BA B e b T B T R T
dabdebdabldebdabdob dobd b dobde
I'IIIIIIIIIIIIIIIIII

. L
, // 1%} }regloncnpladlromz

dbdoL Ao

hﬁﬂP

phe. 73} }reglon copeed trom O
Process 0 I\l ' | |

-;'tr “uiﬁi"

REEEERERN

St a-rwindr-raramrao e

1 J-LJ QU ti LaLJ tddLaLd.
RN LTy

r“ﬁ

Figure 3. Pictorial representation of the domain decomposition for
the simulation application when using 4 processors. The data depen-
dencies of Process | are emphasized, and showa relative to the axially
synunetric domain in which the simulation occurs.

825

SI"_I_?(:‘IAI, SFC?ION COMPUTATIONAL SCIENCE

oWy B - LI N p—

implement the accommodations mentioned above, the
shared variables must be placed in specially named com-
mon blocks, the himits of loops along the axial dimension
of the arrays need to be modified to be functions of the
process performung them, and barrier calls need to be
introduced to synchronize when cross-process communi-
cation might be required. The simplicity of the changes
makes it possible to use the identical code on a sequential
non-Cashmere system without any performance loss. Only
stubs for the Cashmere-specific calls need to be defined,
which return values consistent with having a single pro-
cess on the system. In fact, this is exactly how the initial
port of the code to Cashmere was performed: on a sequen-
tial (single-processor) machine. In addition, as we will
show. the same code can be made to run on hardware
shared memory machines as well.

5. Performance evaluation

We evaluate the performance of the system on a set of
eight AlphaServer 4100 5/600 servers, each with four
600 MHz 21164A processors, 8 MB direct-mapped 64-
byte line size per-processor board-level cache, and
2 Gbytes of memory. The servers are connected with a
Memory Channel Il user-level remote-write system area
network’, a PCI-based network with a peak point-to-point
bandwidth of 75 Mbytes/s and a one-way, cache-to-cache
latency for a 64-bit remote-write operation of 3.3 us. Pre-
vious work has examined the performance of the system
on a variety of standard benchmarks™'®, as well as a
widely used genetic linkage analysis program‘s. In this
paper, we demonstrate the utility of SDSM using our ex-
ample application, TVD.

Figure 4 shows the execution time of the application as
the number ot processors is varied from [to 32, The test
case uses a 256 x 256 grid and allocates approximately
7.5 Mbytes of shared data. The speedup (when compared
to the execution on a single processor without linking with
the Cashmere library or incurring any additional over-
head) at 8 processors is 6.66, while the speedup at 32
processors is 14.6.

Examining performance with up to 4 processors, we sec
that the application achieves 95% efficiency, with a
speedup of 3.78 at 4 processors. We also ran the applica-
tion using hardware shared memory, in other words, with-
out linking with Cashmere. No changes were required to
the application in order to accomplish this. We merely
linked with a different library that used system-provided
mechanisms for allocating shared memory and hardware
primitives to synchronize. The execution time with
Cashmere is equivalent to that using hardware shared
memory alone. This indicates that the Cashmere run-time
is able to achieve its goal of utilizing hardware shared
memory within a node, and avoiding any additional soft-
ware overheads.

826

3,000

2,500

:

Execution time (secs)
g 8

1 2 4 8 6 24 32

Number of processors

Figure 4. Execution times (in sec) for TVD with varying numbers of
processors.

At 8 processors (2 nodes), the application continues to
achieve good efficiency — 83%. Cashmere enables the
application to transparently take advantage of more pro-
cessors than are available on a singlie SMP.

At 16 processors, the application achieves only 64%
efficiency, while at 32 processors, the application
achieves only 45% efficiency. Speedup in this application
is partially inherently limited due to the serialized disk
[/O. In addition, at 32 processors, the application syn-
chronizes using global barriers approximately every 4 ms,
and communicates an average of 71 kbytes between syn-
chronization intervals. Inherent load imbalances in the
application, coupled with those caused by protocol per-
turbation and serialized /O, combine to increase synchro-
nization wait-time to 42% of the total execution time on
an average at 32 processors. Eliminating the I/O brings
the efficiency at 32 processors up to 62% (speedup of
20 — with a corresponding reduction in the synchroniza-

tion wait-time down to 22%), and that at 8 processors up
to 93%.

6. Conclusions

In this paper, we have provided a brief overview of SDSM
systems, in particular, the Cashmere virtual memory-
based SDSM system. We demonstrated the utility and
effectiveness of SDSM through an example hydrodyna-
mics simulation code, TVD, from the astrophysics
domain. SDSM systems on clusters of SMPs connected by
SANs can provide a cost-etfective alternative for high-
performance computing, and enables an application to

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

SPECIAL SECTION: COMPUTATIONAL SCIENCE

transparently take advantage of more processors than are
available on a single SMP.

Just as in TVD, many of the target computationally
intensive applications would benefit from the ability to
interact with the application execution, for example, in
order to steer the computation. Future work will address
this need by extending the sharing capability to more dis-
tributed environments while exploiting application re-
quirements in order to avoid compromising efficiency or
ease-of-use. This will allow easy addition of a distributed
interface that allows interaction. Additionally, we are exa-
mining ways of integrating compiler support for efficient
communication and load balancing with the run-time sys-
tem, as well as providing performance debugging support.

l. Bruck, J., Dolev, D., Ho, C.-T.,, Rosu, M.-C. and Strong, R., in
Proc. of the 7th Annual ACM Symp. on Parallel Algorithms and
Architectures, Santa Barbara, CA, July 1995.

2. Geist, G. A. and Sunderam, V. §., in IEEE 6th Distributed Mem-
ory Computing Conf. Proc., Portland, OR, April-May 1991, pp.
258-261.

3. Hu, Y., Lu, H,, Cox, A. L. and Zwaenepoel, W., in Proc. of the
13th Int. Parallel Processing Symp., April 1999,

4. Samanta, R., Bilas, A, Iftode, L. and Singh, J. P, in Proc. of the
4th Int. Symp. on High Performance Computer Architecture, Las
Vegas, NV, February 1998, pp. 113-124.

5. Scales, D. J., Gharachorloo, K. and Aggarwal, A., in Proc. of the

Fourth Int. Symp. on High Performance Computer Architecture,
Las Vegas, NV, February 1998.

6. Stets, R., Dwarkadas, S., Hardavellas, N., Hunt, G., Kontothanasis,
L., Parthasarathy, S. and Scott, M., in Proc. of the 16th ACM

Symp. on Operating Systems Principles, St. Malo, France, Qctober
1997,

7. Carter, J. B., Bennett, J. K. and Zwaenepoel, W., 1n Proc. of the
13th ACM Symp. on Operating Systems Principles, Pacific Grove,
CA, October 1991, pp. 152-164.

8. Keleher, P., Cox, A. L. and Zwaenepoel, W., in Proc. of the 19th

Int. Symp. on Computer Architecture, Gold Coast, Australia, May
1992, pp. 13-21.

9. Gillett, R., IEEE Micro., 1996, 16, 12—18.

10. Ryu, D, Brown, G. L., Ostriker, J. P. and Loeb, A., Astrophys. J.,
1995, 452, 364-378.

11. Harten, A., J. Comput. Phys., 1983, 49, 357-393.

12. Frank, A. and Mellema, G., Astrophys. J., 1996, 472, 684.

13. Mellema, G. and Frank, A., Mon. Not. R. Astron. Soc., 1997, 292,
795.

14. Dwarkadas, S., Gharachorloo, L, Kontothanassis, L., Scales, D. J.,
Scott, M. L. and Stets, R,, in Proc. of the 5th Int. Symp. on High
Performance Computer Architecture, January 1999,

15. Dwarkadas, S., Schiffer, A. A., Cottingham Jr., R. W., Cox, A. L.,
Keleher, P. and Zwaenepoel, W., Hum. Hered., 1994, 44, 127-141.

ACKNOWLEDGEMENTS. This work was supported in part by NSF
grants CDA-9401142, EIA-9972881, CCR-9702466, AST-0978765,
and CCR-9705594; University of Rochester's Laboratory for Laser

Energetics through a Frank J. Horton Fellowship; and an external re-
search grant from Digital/Compagq.

MEETINGS/SYMPOSIA/SEMINARS

ICMR CME Course on Genetic Counselling
Place: Lucknow 226 014

Course content: Basic medical genetics; Genetic counselling for
common genetic disorders; Introduction to cytogenetics; DNA
diagnosis; Carrier detection; Prenatal diagnosis and Genetic
screening.

Send application through Head of the Institution enclosing
bio-data, list of publications and short note about the relevance
of the proposed course to you and your future plans.

Contact: Dr Shubha Phadke
Department of Medical Genetics
Sanjay Gandhi Post Graduate Institute of
Medical Sciences
Lucknow 226 014
Fax: 0522-440017/440973
E-mail: shubha@sgpgi.ac.in

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

Summer Course on Current Techniques in Electrophoresis

Topics include: Paper/agarose gel electrophoresis; Immuno-
electrophoresis; Rocket/2D immunoelectrophoresis; Tube gel/
DISC gel electrophoresis; Slab gel (PAGE) electrophoresis; Iso-
electricfocusing/2D electrophoresis; Electroelution and blotting
techniques; Image analysis/gel documentation,

The course programme is planned during this summer. Only a
limited participants of 16 nos. will be selected. Duratton 1 week.
Both theory and practical are dealt by experts in the field from
Anna University, Chennai; MKU, Madurai and 11T, Kharagpur.
Interested students/researchers may contact immediately for
more detalls.

Contact: Dr K. Anbalagan
Direcior, The Electrophoresis Institute
Biotech Yercaud
Yercaud 636 601
Phone: 04281-22626/22748
Fax: 04281-22256
E-mail: phoresis@vnplsalem.net.in
Visit: hup:electrophoresis.i(go.com

827

