SPECIAL SECTION: COMPUTATIONAL SCIENCE

- i i i

TUTORIALS

An introduction to load balancing for parallel

Kalim Qureshi* and Masahiko Hatanaka

raytracing on HDC systems

Department of Computer Science and Systems Engineering., Muroran Institute of Technology, Mizumoto cho 27-1, Muroran,

050-8585 Hokkaido, Japan

Heterogeneous distributed computing (HDC) systems,

which exploit the aggregate power of a network of
workstations and personal computers are an inexpen-
sive alternative to the dedicated parallel super-
computing systems. As these systems are widely avail-
able in academic and industrial environments, it is
becoming popular to use these computing resources to
solve time-consuming applications.

The focus of this paper is to empirically identify the
load balancing problems in parallel raytracing on
HDC system and present a short survey of current
load balancing schemes for HDC systems.

1. Introduction

RAYTRACING is a method of generating realistic computer
images. For many applications it requires a large amount
of computation due to calculations of colour and intensity
for each pixel by tracing light rays'. Moreover, often the
computation requirements and application data size cross
the limits of a single workstation (WS)/personal computer
(PC).

The advent of commodity-based distributed computing
environments has made it possible to process such kind of
images in reasonable time on modest budgets. The main
problem with such type of cluster computing environments
is the continuous change in the performance of individual
(node) WS/PC, which requires effective task partitioning,
scheduling, and load balancing to get better performance.

Many researchers suggest enhancements in adaptive
task scheduling strategies for homogeneous distributed
systemH. However, these strategies do not work well for
heterogeneous distributed computing (HDC) systems
without further modifications. The crucial point is that
they are based on fixed parameters that are tuned for the
specific hardware. In HDC systems, this tuning 1s often
not possible because both the computational power and
the network bandwidth are not known in advance ~ they
may change unpredictably during run-time.

Strategies based on task distribution and task migration

*For correspondence. (e-mail; qur@wave.csse.muroran-it.ac.jp)

E18

from heavily loaded to lightly-loaded nodes are discussed
in Sarje and Sagar’. The task migration has two serious
drawbacks®.

1} All nodes should continuously monitor the status of
other nodes.

1i) During the computations, a node has to identify its
load and float the information on the network, hence, this
produces a large amount of communication overhead.

This paper i1s organized as follows. In next section, we
describe the fundamental classification of load balancing
schemes for HDC systems and description of investigated
strategies. Strategy performance evaluation metrics and
the experimental set-up are explained in section 3. Section
4 presents the obtained results and discussions. Finally,
the conclusion of this paper and future research directions
are given in section 5.

2. Load balancing schemes for HDC

One of the biggest issues in HDC systems is how to dis-
tribute and schedule tasks among computing-resources/
nodes to have some performance goal, such as minimizing
execution time, minimizing communication delays, and/or
MAXIMIZiNg 1esources utilization’.

Scheduling techniques can be classified -based on the
availability of program task information as dererministic
and non-deterministic. In deterministic scheduling, the
information about tasks to be scheduled and their relations
to one another is entirely known prior to execution time.
In non-deterministic scheduling, some information may
not be known before the execution of the program. Both
non-deterministic and deterministic scheduling can be
implemented using static, dynamic, or hybrid methods.

In static scheduling, the assignment of the tasks to the
nodes is done before the execution of the program. Infor-
mation regarding task execution time and processing
resources is assumed to be known at compile time. A task
is always executed on the node to which 1t 1S
assigned,

Dynamic scheduling is based on the re-distribution of
processes among the processors during execution time.
This redistribution is performed by transferring tasks from

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

SPECIAL SECTION: COMPUTATIONAL SCIENCE

heavily-loaded processors to lightly-loaded processors
with an aim to minimize the processing time of the appli-
cation. The load balancing operations may be centralized
in a single processor or distributed among all the pro-
cessing elements that participate in the load balancing
process. Many combined policies may also exit. For
example, the information policy may be centralized but
the task transfer and placement policies may be distri-
buted. Interested readers may refer to refs 7-9 for addi-
tional details.

The advantage of dynamic load balancing over static
scheduling is that the system need not be aware of run-
time behaviour of the application before execution. The
flexibility inherent in dynamic load balancing allows for
adaptation to unforeseen application requirements at run-
time. The major disadvantage of dynamic load balancing
schemes is the run-time overhead due to:

e The load information transfer among processors,

e The decision-making process for the selection of pro-
cesses and processor for job transfers, and

e The communication delay dug to task relocation itself.

2.1 Resources estimation policies

A resources estimation policy merely provides an infra-
structure for exchange of nodes’ state information. Classi-
fication of resources management policies is described
below: ‘

Centralized: A central node collects state information
and constructs an estimate of the system state. The central
node may be a globally shared file that is accessed and
updated by all nodes. This organization has an advantage
that it incurs low overhead during estimation®. The dis-
advantages are poor responsiveness of a central resource
in a large-scale system resulting in poor scalability and
the failure-prone nature of a central resource.

Decentralized: In a decentralized organization each
node of a distributed system is responsible for collecting
state information and obtaining an estimate of the system
state. This type of organization has higher availability 1In
the presence of failures, but it can potentially incur large
overhead to maintain accurate state information and there-
fore is not easily scalable to a large-scale distributed
computing systemm.

Hybrid: A hybrid organization combines both cen-
tralized and decentralized organizations, inherits their
properties, and attempts to extract advantages of both
organizations. A hybrid organization may be implemented
in two ways. In the first case, nodes are divided 1nto
clusters and state information is exchanged within and
between clusters. Membership within clusters may be
decided by various factors such as network proximity,

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

type of service performance by nodes, etc. A cluster-
based hybrid scheme has shown potential for providing

the desired performance in large-scale distributed com-
puting system''.

2.2 Run-time task scheduling strategy

Since WSs/PCs have performance variation characte-
ristics'2, static task distribution is not effective for HDC
systems -. In this investigation our aim is to quantify the
load-balancing problem for raytracing application on
HDC systems, using run-time task scheduling (RTS)
strategy with fixed sub-task size.

In the RTS strategy, a unit of sub-task is distributed at
run-time. As the node completes the previous assigned
sub-task, a new task is assigned for processing. The unit
of task in the RTS strategy is fixed at one horizontal scan-
line of the image. If the unit of task becomes shorter, for

example one pixel, it increases the inier-process commu-
nication overhead'*.

3. Performance evaluation

The HDC system used in our investigation js composed of
seven Sun WSs loaded with SunQOS/Solaris, and thirteen
PCs (Intel-based machines) loaded with Linux/FreeBSD
operating system; all of these machines are connected via
Ethernet. The network communication is handled by Open
Consortium Remote Procedure Call (ONC-RPC) library
and XDR filters. UNIX heavy weight process technique Is
used to control many nodes at the manager’s end. We
used four distributed raytracing images that are called as
scenes A, B, C and D, and each image is composed of
840 x 640 pixels. The five HDC configurations are set,
i.e. the HDC system is composed of number of nodes
(NN) =20, 16, 12, 8 and 4. The performance of the RTS
strategy is mainly evaluated in terms of speedup and
nodes’ idle time cost. These terms are defined briefly.

3.1 Speedup
The fastest machine's processing time taken to process the

application individually divided by processing time taken
while processing in the PDP system environment.

32 Nodes’ idle time cost

(Node’s new task starting time) subtracted by (Node's
previous task completion time).

NT
Nodes’ idle time cost =)_‘o,- ;
(=l

Biv

SPECIAL SECTION: COMPUTATIONAL SCIENCE

J— " S——

Table 1. Image scene processing times for the single fastest

machine in the network

Image scene [mage scene Image scene Image scene

A B A D

63 sec 122 sec 152 sec 244 sec
W#_#_
Table 2. Measured average speedup, number of requests made by the

client machine to distribute task, and average nodes’ idle time cost
for five HDC configurations in RTS strategy

Number of requests
made by the client ma- Average nodes’

HDC system Average chine to idle time cost
{no. of nodes) speedup distribute task (sec)
4 2.5 640 32
8 3.4 640 42
12 4.0 640 47
16 4.4 640 33
20 4.9 640 59

where NT 15 the total number of nodes 1n the current
HDC configuration.

4. Results and discussions

The time taken to process the image scenes A, B, C and D
by the single fastest machine in the network is shown in
Table 1. All measurements are carried out when no other
user has logged in to the network.

We evaluated the performance of the RTS strategy
using the unit of task (one horizontal scan-line of the
image). Due to the small task size, a large number of
master requests occurred (see Table 2) and high overhead
of nodes’ idle time cost is generated. The average meas-
vured nodes’ idle time cost increases as the number of
nodes increases in HDC system configurations, which i1s
due to the following reasons:

i) As the number of nodes increases, the waiting child
processes increase at the master, which increases the auxi-
liary work load at the master machine, therefore, i1t may
decrease its task paralellization capability and effectively
increase the node’s waiting time.
ii) As the number of nodes increases in the master and
workers/nodes HDC system model, the low bandwidth
network usage increases, because each node has the res-
ponsibility to report the results to the master. Therefore,
this creates extra load on the network, which may be the
cause of long nodes’ 1dle tume cost.

In RTS strategy, since the tasks are assigned to the node
at run-time, the number of tasks processed by the node is
proportional to the node’s performance and it has a

820

potential to absorb the machine’s performance variation
characteristics and non-homogeneous nature of the appli-
cation. However, RTS strategy performance depends upon
the size of the sub-task. If the sub-task size 1S too small
then 1t generates a serious inter-process communication
overhead. If the sub-task size is too large then it may cre-
ate a load imbalance due to the inappropriate sub-task size
of nodes, particularly for slow performance node’>.

5. Conclusions

In this paper we studied the performance of the RTS stra-
tegy for raytracing application on HDC systems. The per-
formance can be improved by reducing the number of
requests and replies made by the client machine to assign
task and collect data from the node.

The following points are suggested to improve the per-
formance of the RTS strategy:

1) Task assignment should be adaptive because the HDC
system consists of unequal-performance machines. The
adaptive sub-task sizes reduce the number of requests
made by the client to distribute the whole task and eftec-
tively reduce the nodes’ idle time cost.

11) The effective load balancing can be achieved by task
migration from slow performance nodes to hmigher per-
formance nodes and by ensuring that no single node is
kept idle until the full application is processed.

e,

I. Alan Heirich and James Arvo, J. Supercomput., 1998, 12, 57-68.

2. Lee, C. and Hamid, M., Parallel Comput., 19935, 21, 137-160.

3. Reinhard, E. and Jansen, F., Parallel Compur., 1997, 23, 873
885.

4. Zhou, S., IEEE Trans. Software Eng., 1988, 14, 1327-1341.

5. Sarje, A. and Sagar, G., /EE Proceedings-E, 1991, 5, 313-318.

6. Dandamudi, S., IEEE Concurrency, July-September 1998, pp. 63~
72.

7. Casavant, T. L. and Kuhl, J. G., [EEE Trans. Software Eng., 1988,
14, 141-154.

8. Rotothor, H. G., [EE Proc. Camput. Digit. Technol., 1994, 141, 1~
1. :

9, Yung Terng Wang and Robert, J. T. Morris, [EEE Trans. Comput.,
1985, 34, 205-217.

10. Zhou, S. and Ferrari, D., Technical Report UCB/CSD 87/336,
University of California, Berkeley, January 1987.

11. Zhou, S, Zheng, X., Wang, 1. and Delisle, P., Technical Report
CSRI-257, University of Toronto, Toronto, Canada, April 1992.

12. Hamid, M. and Lee, C., Parallel Comput., 1997, 22, 1477-1492.

13. Zhang, Y., Kameda, H. and Hung, S. L., IEE Proc. Comput. Digit.
Technol., 1997, 144, 1Q0-107,

14. Freisleben, B., Hartmann, D. and Kielmann, T., Proceedings of
the Thirtieth Annual Hawait International Conference on System
Sciences, 1997, pp. 596-605.

15. Kalim Qureshi and Masahiko Hatanaka, Trans. [EE Jpn, 2000,
120, 151-157.

CURRENT SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000

