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Inter-residue interactions in protein structures

The attainment of secondary and tertiary
structures of globular proteins 1s the
result of inter-residuc interactions be-
tween amino acitd residues along the
polypeptide chain. Inter-residue inter-
actions 1n protems have been viewed
from different perspectives, such as
development of cmpirical potentials',
partitioning of energetic componcnts 10
the folding and stability of globular
proteins®, spatial distribution of residues
between the inlerior and exterior of
protein molecules®, etc. Miller et al’?
analysed the preference of residues to
occur in the interior and surtace of pro-
teins based on the concept of solvent
accessibihity, Ponnuswamy and
Gromiha® cstimated the relative contri-
butions of non-covalent interactions (o
the folding and stability of globular
proteins, Recently, Bahar and Jernigan®
have dcrived residue-specific potentials
and utilized them to successhully dis-
criminate the correct sequences 1n in-
verse  protein folding  experiments.
Further, the importance of inter-residue
interacltions has been stressed by scveral
rescarchers in the field*™.

Tanaka and Scheraga’ categorized the
inter-residue  Interactions  into  short,
mcdium and long-range and proposed a
hypothesis lor protein folding by a
threc-step mechanism based on these
interactions. For the past two decades,
the concept of inler-residuc interactions
has been the main Tocus to understand
the mechanism of protein tolding. Dur.
ing the process of protein folding, resi-
dues which are scquential neighbours as
well as those far away in the sequence
interact cooperatively Lo form the native
stable structure. Recently, the short,

mcdium  and long-range interactions
have becen classified according to the
distance ot scparation between the resi-
dues along the polypeptide chain. This
classification has been used successfully
to address the problem of protein fold-
ing and scquence recognition'™''. In
this communication, we reveal the con-
tribution of inter-residue interactions in
globular proteins belonging to different
structural classes.

The crystallographic data of 150
globular proteins form the source of our
study. The selected proteins werc non-
homologous and the stiructures were
determined to a high resclution
(resolution < 2.5 A) and belong to {our
diffcrent structural classes, namely all-
a, all-f, a +f8 and a/§ based on the
criteria of Kneller ¢f al.'* and Chou'?,
Atomic coordinates of all the proteins
have bcen taken from Lhe recent release
of the Protein Data Bank (PDB) of
Brookhaven National Laboratory'®'”.
Detatls about the PDI3 code, structural
class and the fold'™'" of all the 150
proleins and the secondary structural
assignments'® have been described in
our previous article'”.

The inter-residuc contacts have been
analysed [rom the composition of sur-
rounding residues for cach amino acid
residuc in a protein'™"™® The residucs
in a protein molecule are represented by
their a-carbon atoms. Using the C, co-
ordinates, a sphere of radius 8 A is fixed
around ecach residue and the composition
ol surrounding residues associated with
cach residue is caleulated™ . It has been
shown that the influence of each residue
over the surrounding medium extends
clfectively only up to 8 A (refs 22-24).
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From the composttion of surrounding
residues within the sphere of 8 A radius
contributions from <+ 3 residues in
scquence level are treated as short-range
contacts, £ 3 or + 4 residues as medium-
range countacts and > x4 residues are
trcated as long-range contacts'™?*. Fur-
ther, the long-range contacts (> *4
residucs) are classified into several in-
tervals with a step of 10 (4-10; 11-20;
21-30; 31-40; 41-50 and > 50). The
number and percentage of long-range
contacts in each interval for all the resi-
ducs in the 150 globular proteins be-
longing to four different structural
classes were computed. Further, contri-
butions of all the 20 amino acid residues
towards the long-rangce interactions in
different 1ntervals werc cestimated for
the entirc database.

It was observed that the average resi-
due contacts in the medium-range are
more 1n the all-a proteins (2.8 con-
tacts/residuce) compared to all-8 proteins
(0.92 contacts/residue) whereas average
long-range contlacts are moce for the all-
B proteins (5.2 contacts/residue) than
all-c  proteins (2.4 contacts/residug),
The average residue contacts in the
a + 8 and a/f proteins lic in the range
between all-¢ and all-# proteins  for
both medium and long-range interac-
tions' .

Among the 20 amino acid residues,
Mect has the highest medivm-range con-
tact followed by Leu, Ala, Glu and Gln,
Interestingly these residucs are abserved
to be hehix 2" Pra has the

formers .
lowest medium-range contact, mdicating
that it is not a lavourced residue iy «@-
helical conformation=® =%, The residue
preferences tor cach of (he structural
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Figure §. Average percentage of long-range contacts in different intervals for the four structural classes of globular proteins.
O, all-a; ¥, all-g; V,a+ 8, B o/, ® combined sct.

classes have been analysed in our earlier
article'.

The residue lle has the highest lfong-
range contact followed by the hydro-
phobic residue Cys, Val, Tyr, Trp, Leu
and Phe. {t is noteworthy that all the
aromatic residues have higher long-
range contacts and they are important
for the formation of a hydrophobic core
during the process ol protein folding.
The statistical preference of the 20
amino acig residues to form medium
and long-range contacts has been used
to understand the stability of protcins
caused by buried and partially buried
mutations™— " and the thermal stability
of globular proteins™.

Figure | shows the average percent-
age of long-range contacts in different
restdue intervals for the four structural
classes and the whole sct of proteins. A
perusal of Figure 1 clearly reveals the
opposite trends between the folding of
all- and all-8 proteins. The all-a class
proteins have more long-range contacts
in the 4-10 range and the all-f class
proteins have more long-range contacts
in the 1-20 range. This may be due to
the specific hydrogen bonding patiern of
a-helices and B-strands in these classes

130

of proteins. The behaviour of proteins in
a + f and a/f classes is surprising. The
a + f class of proteins prefer the range
4-10 while the a/f class of proteins
prefcr the 21-30 range. The helical and
strand segments are segrcgated into
separate domains in @ + 8 proteins and
the proteins in this class behave like
either all-a or all-8 type. [n the present

analysis we found that the features of

a + B proteins are similar to those of
all-a proteins. In a/ff class, the a-
helices and B-strands occur alternatively
and some residue distances are neces-
sary to form f-strand and barrel, which
leads to having higher contacts in the
21-30 range. A simtlar trend was also
observed in our previous study of (a/f)y
barrel proteins®>?. These results indi-
cale that the long-range contacts from
different intervals play a considerable
role in the folding of proteins belonging
to different structural classes.

Further, we observed that the residues
Cys, lle and Val prefer the 11-20 range
and all the other residues prefer the 4-
10 range. Interestingly, Cys, lle and Val
are¢ the topmost three hydrophobic resi-
dues™. These residucs have a higher
tendency of forming hydrophobic clus-

ters and disulfide bridges duc to long-
range contacts and hence prefer the
range 11-20.

The above results reveal the extent of
the influence of inter-residue 1nterac-
tions in different structural classes as
well as in different secondary structures.
This provides a basis to understand the
process of secondary structure forma-
tion”, particularly the characteristic
residue separation required tor the for-
mation of a-helical and B-strand struc-
tures.

Summarizing, the environment
around each residuc in a globular pro-
tein as defined in a sphere of & A radius
can be conveniently partitioned as com-
prising residues that contribute to short,
medium  and  long-range interactions,
The dominance of medium-range mter-
actions in the formation of «-hclices
and that of long-range interactions in
the formation of f-strands has been
brought out. Further, the stabilization of
proteins belonging to different struc-
tural classes through non-covalent inter-
actions, and  the  distinguishing
characteristics of each class have been
understood. It is envisaged that these
results may be incorporated in proten
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structure prediction algorithms as well
as 1n prolein design experiments.
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