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Recently string theory has succeeded in providing a
microscopic basis for black hole thermodynamics and
HawKking radiation. We review the main ideas which
led to this development.

1. Introduction

In general relativity black holes are classical solutions
with a region of space-time which is causally discon-
nected from the asymptotic region. The boundary of
such a region 1s called the event horizon. No physical
signal can travel from a point inside the event horizon to
a point outstde. Black holes are believed to be the end-
point of gravitational collapse of massive stars. As-
tronomers have by now identified several objects as
black holes.

An observer who i1s sitting outside can never ‘see’’ the
Interior of the horizon. According to her clocks, an in-
falling object takes an infinite amount of time to reach
the horizon; as it approaches the horizon, it slows down
and never quite makes it to the horizon. This is because
of an effect called the gravitational red shift. Clocks
stationed at different points in a gravitational field run at
different rates: Generally a clock will appear to run
slower as observed by someone who is at a location
where the metric components are weaker than that at the
location of the clock. As a result, if some physical proc-
ess emits light at some frequency, it will appear to have
a much lower frequency when detected at a position with
much smaller metric components, so that there is a red-
shift. At the horizon, this redshift is infinitely large.

The infinite redshift might give the impression that the
gravitational fields at the horizon must be infinitely
large. This is not true. For a very massive black hole,
local gravitational fields are very weak at the horizon. In
fact for a neutral spherically symmetric black hole of
mass M 1n four space-time dimensions, the magnitude of
the space-time curvature, IRl (which is the measure of
the strength of the gravitational field) at a distance r
from the center scales as

M
R~ =

r

(1.1)
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For such a black hole, the radius of the horizon is pro-
portional to M, so that the curvature at the horizon
scales as 1/M* and can become arbitrarily small for large
M.

In fact, an infalling object will not feel anything spe-
ctal as 1t reaches the horizon. There is no particularly
strong gravitational force and the object will happily
proceed to cross the horizon and go ‘inside’. The cross-
ing will happen in a finite proper time (the time meas-
ured by a clock travelling with it). Thus even though the
outside observer never sees the object crossing horizon,
she knows that there is a region beyond the horizon
where this object will go to.

In 1974 Hawking' made a remarkable discovery: he
showed that due to quantum effects a black hole is not
really black. Rather, it emits a steady stream of particles
of all kinds, with a spectrum which is approximately
thermal at late times. There 1s a heuristic way of under-
standing this process. Due to quantum fluctuations, pairs
of particles are always created in a vacuum. Normally
they would annihilate quickly. Consider, however, such
a process occurring near the horizon of a black hotle: in
this case, one member of the pair can go inside the black
hole — never to come out again; the other member can
tly off to infinity. Since the actual state of the particle
which went 1n cannot be measured by an observer sitting
far away, he/she would average over these states and
this would result in a mixed state. The nontrivial fact
being, essentially due to the large redshift at the hori-
zon, that the resulting spectrum is thermal. This radia-
tion 1s called Hawking radiation.

Because of its thermal nature, one can associate stan-
dard thermodynamic properties to a black hole. Re-
markably, these properties are rather universal in nature
and related to geometric properties of the black hole
spacetime. The black hole entropy — called Beckenstein-
Hawking entropy, Sgy—has a leading contribution
given, inunits A =c =1, by

— AH
4G

SBH (1.2)

where Ay 1s the area of the horizon and G 1s the New-
ton’s gravitational constant. This gave a rationale for an
earlier conjecture by Beckenstein® that one should as-
stgn an entropy to a black hole to avoid violations of the
second law of thermodynamics, and that entropy should
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Figure 1. Redshift and Hawking radiation by pair creation at hori-
ZOn.

be the horizon area. For all kinds of black holes 1n all
possible number of space-time dimensions, this i1s the
leading result for large black holes. In the similar way
the temperature, called the Hawking temperature Ty 1S
given by

Ty =—,
; 27

(1.3)
where « is the surface gravity at the horizon. This 1s the
acceleration felt by a static object at the horizon meas-
ured by clocks at infinity. Finally the luminosity is re-
lated to the absorption cross-section by the principle of
detailed balance

o.(k) d%

Ii(k) =—; -
e™ +1 (2m)

(1.4)

Here T,(k) 1s the rate of emission of a particle of type ¢
in a momentum state k with energy w and o;(k) 1s the
corresponding classical absorption cross-section of that
particular wave by the black hole. The thermal factor
which appears is the standard Bose—Einstein factor for
bosons (with — sign) and Fermi-Dirac factor for fermi-
ons (with + sign) and the last factor is the standard
phase space factor. d 1s the number of spatial dimen-
sions. (k) 1s calculated by solving the relevant classical
wave cquation in the black hole background.

Hawking radiation is a rather robust result. In its deri-
vation, gravity is treated as classical while fields corre-
sponding to particles which are radiated are treated as
guantum: this is the semiclassical approximation. A pri-
ori this is expected 1o be a good approximation near the
horizon of a very massive black hole. FFor such a black
hole, curvatures arc small so that gravity 1s weakly cou-
pled and its quantum effects are ¢xpected to be small.
Furthermore, the standard methods of quantum ficld
theory are expected to be valid.

Ever since its discovery, Hawking radiation appeared
as a puzzling phenomenon. In other areas of physics, a
‘hot’ body actually means a system which has a large
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number of degenerate microstates for a given mac-
rostate. Normally we do not care to measure the mi-
crostates of the system; so we average over them. This is
statistical mechanics, 1.e. because of this averaging
process we have an incomplete knowledge of the system
which 1s now described in terms of thermodynamic vari-
ables. Entropy § is related to the number of microstates,
(2, by the well known Boltzmann

S =log ), (1.5)
which forms the cornerstone of the microscopic deriva-

tion of thermodynamics. In a similar way the tempera-
ture 1S given by

lzgﬁ. (1.6)

T oL
It 1s conceptually important to know that such a micro-
scopic basis exists. It ensures that in principle there 1s a
complete description of the system in terms of a wave
function which has a unitary evolution vis Schrodinger
equation. The thermodynamic description 1n terms of a
mixed state (i.e. a density matrix p for which p* # p) is
only a coarse-grained description, which we use since
we do not care to keep track of the details of the mi-
crostates. ™

In the framework of General Relativity 1t 1s rather un-
clear whether the thermal properties of black holes has
such a microscopic origin. There exists a set of results
in classical general relativity, called no hair theorems,
which state that the field of a black hole 1s uniquely
specified by its mass M, angular momentum J, and the
values of the various gauge charges (J;. These parame-
ters specify the macrostates. However, given finite val-
ues of these parameters, the horizon arca is generically
nonzero: in fact, very large for large values ol these pa-
rameters. The no hair theorems then suggest, however,
there are no further microstates for each such mac-
rostate! This makes it rather difficult to believe - as
long as we are in the domain of classical general rela-
tivity — that the black hole entropy has a statistical
origin.

If black hole thermodynamics does not have a statsti-
cal origin, there could be a serious problem with the way
we understand physical laws. This would indicate that
there is a funidamental source of uncertamnty in the de-
scription of physical phenomena involving black holes,
The problem may be highlighted by constdering the
{ollowing thought e¢xperiment devised by Hawking”,
Consider an initial pure state of some kind of matter,
which then collapses to form a black hole. The black
hole now radiates in a nearly thermal fashion and as 1t
radiates its mass decreases = it evaporates, Suppose this
continues (il the black hole evaporates completely.
Then at the end, we have thermal radiation in space and
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there is no black hole any more. A pure state has
evolved into a mixed state. In other words, the detatled
information about the 1n state has been lost and all we
have is thermal radsation. This would, of course, violate
guantum mechanics, which evolves pure states into pure
states — as is consistent with unitarity.

Hawking in fact claimed that this is what would in-
deed happen. It i1s remarkable that one reached this
conclusion putting together two well verified laws of
naturc — quantum mechanics and general relativity — in a
domain where we expect both to be vahid.

While such a ‘information loss’ could be possible,
most physicists would like to believe that the conclu-
sions are based on rather incomplete knowledge about
the quantum theory of gravity. Recall that if there was
no microscopic description of an ordinary thermal gas,
its thermal nature would have implied a similar loss of
information. The statistical basis for thermodynamic
laws for gases was put on a firm footing only after the
advent of quantum mechanics and its application to
atomic phenomena. In a similar way we might expect
that 1t we address the problem of black hole evolution in
a consistent theory of gravity which obeys the usual
laws of quantum mechanics, there cannot be such an
information {oss.

Over the past twenty years string theory has estab-
lished tselt as a consistent quantum theory of gravity.
Till a tew years back, string theory provided only a
perturbative theory of gravity. Recent developments
related to the discovery of a large number of symmetries
of the theory, called duality symmetries, it is becoming
increasingly clear that the theory aiso describes gravity
nonperturbatively. It this ts so, we should be able to
describe black holes and their evolution in a way consis-
tent with quantum mechanics.

In fact 1t 1s well known that highly excited states in
string theory have large degeneracies. Such massive
states would torm black holes at sufficiently strong
coupling. In 1993 Susskind® suggested that this degener-
acy accounts for the Beckenstein—Hawking entropy.

[n the past three years, this expectation has been borne
oul to a large extent. We now know that string theory
provides a microscopic basis of black hole thermody-
namics, at least for a class of black holes. Black hole
entropy arises in the usual way due to a large degener-
acy of states and black hole radiation is usual quantum
mechanical unitary decay whose thermal nature appears
only when we choose to ignore the details of the mi-
crostates and average over them. String theory provides
quantitative predictions for thermodynamic quantities
and emission rates which are in exact agreement with
the semiclassical answers, in the regime where the latter
1s expected to be valid. While we still do not have a

complete picture of black hole evolution and we do not -

have a reliable microscopic model for all kinds of black
holes, these results go a long way towards a resolution
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of the information loss problem —in favor of unitary
evolution.

In the rest of the article we will discuss the main con-
ceptual elements of this development. Qur discussion
will be simplified and we will not explain the details of
various derivations.

2. Black holes as quantum states

Since string theory is a quantum theory of gravity, black
holes must appear as quantum states. How does this re-
late to the fact that in general relativity black holes ap-
pear as classical solutions?

The sttuation is analogous to electrodynamics. In
classical electrodynamics, a point charge is described as
a solution of the equations of motion — Maxwell’s equa-
tions. The solution describes an electric field satisfying
standard Coulomb’s law. This i1s not the way we de-
scribe point charges in quantum electrodynamics. In
QED point charges are described as states in a quantum
field theory and its evolution is described by the
Schrodinger equation for its wave functional. However
we know that when the effective charges are large
enough, the results of the quantum theory agree with the
classical prediction.

Of course quantum electrodynamics is a complicated
interacting theory which we don't know how to solve
exactly. In fact we do not quite know how to write down
the state of a point charge in an exact fashion. There is
however one limit in which 1t is easy to write down this
state. This is the limit in which the fine structure con-
stant 15 very small. In this limit the state of a point
charge 1s described as a state in the theory of a free Di-
rac field — and we know how to quantize this exactly!
But in this limit the state 1s described by merely a point
source and there 1s no electric field since the latter is
proportional to the coupling! We do know, however,
how we can start with such a description and proceed to
describe electric fields. This happens due to interac-
tions, which we can put in in a perturbative fashion. The
effect of these interactions in fact is to produce the cor-
rect electric {ield, as shown for example by the fact that
this procedure reproduces the correct Rutherford scatter-

ing.

2.1 String theory

In string theory’, the quantized normal modes of a
closed string appear as an infinite tower of particles.
Unlike theories of point particles, consistent quantiza-
tion itmposes severe restriction on what string theories
we can have. At the perturbative level, this requires that
the theory must live in ten space-time dimensions and
has to be supersymmetric. There are five such known
perturbative theories which are consistent — and all of
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them have the feature that their spectrum contains a
massless spin-2 field which has properties identical to
that of a graviton. In fact while we don't know a com-
plete formulation of the theory we know its low energy
behavior: this is given by a usual field theory -
supergravity. And we also know that the spin-2 field
which appears in the perturbative spectrum is indeed the
eraviton in this supergravity theory. In other words, the
low energy limit of string theory contains standard gen-
eral relativity. In addition, 1t contains other massless
fields which can be interpreted as the fields required to
describe other forces and matter of nature — electroweak
and strong interactions.

We will be interested in ‘Type II’-string theories,
which are of two kinds, Type IIA and Type IIB. For
these theories, the bosonic part of the low energy super-
gravity action may be written as

I € a0l 1
§=— J.dm*e‘z‘;’(Rﬂ—rl V)? ~— vH"”A)
52 A__ (V@) 12 LY.
1 #l-nl‘l“}
+ ZP! FI"‘{['”#FF J ) (2‘1)

()

where in the sum 1n (2.1), p=1, 3, 5 for Type-IIB and
p=12, 4 for Type-ll1A. H,,; 1s the field strength of a
rank-2 antisymmetric tensor gauge field B,, which ap-
pears in both the theories and F, ts the field strength
of a rank-(p — 1) antisymmetric tensor gauge field. The
scalar ¢ 1s called a dilaton. The coefficient is related to
the gravitational constant in ten dimensions and to the
basic coupling constant in string theory — the string
coupling g and the string tension T by the expression

) 4mlg’

7;4

, (2.2)

where R 1s the scalar curvature of a metric g,,. Note that
the gravitational part of the action in (2.1) is not of the
standard Einstein-Hilbert form in general relativity,
because of the presence of the e”?? factor. For this rea-
son, the metric which appcars in (2.1) is called the
‘string frame metric’. One can perform a redefinition of
the metric to recast the action in the Einstein~-Hilbert

form. In ten dimensions this involves the definition of an
‘Einstein frame’ metric

of=ebp (2.3)

- . . ' " . . "
and in terms of the Einstein frame metric the factor ¢ %
disappears from the coeflicient of the Ricci scalar.,

To desenibe a four-dimensional world, six of the di-
mensions have to be compact, i.e. the coordinates which
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describe them are more like angles. For energies much
smaller than the inverse size of the compact directions,
these compact directions are invisible and one has a
lower dimensional description. This procedure, called
dimensional reduction, is the well known Kaluza-Klein
procedure. At these low energies, any field which carries
a momentum in the compact direction is massive and
decouples from the low energy Lagrangian. The effec-
tive lower dimensional action for fields which do not
depend on the compact coordinates may be written down
following a standard procedure starting from (2.1). We
will not do this, but mention several important points
about the Kaluza-Klein procedure which will be essen-
tral for us. |

First, if i denotes a compact direction, the components
gui of the ten dimensional metric behave as electromag-
netic gauge fields. In fact higher dimensional theories of
gravity were invented by Kaluza and Klein in an attempt
to unify gravitation and electromagnetism where elec-
tromagnetism of the four dimensional world i1s actually
gravity in higher dimensions. The objects which carry
charges under this electromagnetic gauge field (which
will be referred as a Kaluza-Klein gauge field) are those
which have momentum along the compact direction.
Secondly, components of higher rank antisymmetric
tensor gauge fields which are along the compact direc-
tion would appear as lower rank gauge fields in the non-
compact dimensional description. For example, a rank-p
gauge field which has one index along a compact direc-
tion A, i = Am‘m,___ now becomes a (p — 1)-rank gauge
field. If there are two components along compact direc-
tions 1t becomes a rank-(p - 2) gauge field and so on.
Thirdly, the gravitational constant x*; of the lower di-

mensional theory 1s related to the ten dimensional
gravitational constant k° by

KZ

2
Kg= . (24)
V1o-4

where Vigg 1s the volume of the (10-d)-dimensional
compact internal space. Finally as we dimensionally
reduce, the relationship between the string frame metric
and the Einstein frame¢ mctric changes. If we have
noncompact space-time dimensions, the relationship is

AP
E o a ,
g;w e bxp[d _ z]ﬁsgw*

(2.5)

Scveral consistent chotces of such compact manifolds
arc known, but we don’t know any criterion which
chooses one such compactification over another. It is
nevertheless interesting  that  compactifications  exist
which lead to models which are supersymmetric exten-
sions of the standard model with three generations of
quarks and leptons.
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2.2 Black holes in string theory

In any case, string theory contains gravity — and there-
fore it contains black holes. In fact any solution of
general relativity is necessarily a solution of string the-
ory. String theory of course has more solutions and
it has more fields. Clearly the conceptual problem
about information loss can be posed in string theory
and should have a definitive resolution. This is regard-
less of whether we know enough about string theory to
make contact with the observed world. Hawking radia-
tion is a feature of any theory which contains general
relativity in any number of dimensions —the fact
that other fields are present i1s not important. If string
theory is a consistent quantum theory of gravity, one
should be able to describe Hawking radiation in a uni-
tary fashion. |

To describe black holes, however, we need to know
nonperturbative features of the theory. Dramatic devel-
opments since 1994 has given us a large body of knowl-
edge about nonperturbative properties of string theory.
Admittedly, we do not have a complete formulation of
string theory at the moment. However we do know that
these nonperturbative properties are correct and should
be present in a complete formulation. Knowledge about
these non-perturbative properties came with the realiza-
tion that string theory probably admit a class of symme-
tries called duality symmetries. Some of these
symmetries (called S duality) relate a particular pertur-
bative string theory at weak coupling to the strong
coupling behavior of another string theory. Yet other
symmetries (called T dualities) relate a string theory on
one background to (generally) another string theory on a
different background. Of course we cannot prove dual-
ity: this would require a complete formulation of the
theory. The evidence for T-duality comes from pertur-
bation theory, which we do know. S-duality is non-
perturbative and evidence for this comes from various
sources — low energy effective actions, classical solu-
tions, and above all, the extremely impressive self-
consistency of consequences derived from the assump-
tion that this is a symmetry. A crowning achievement of
this development has been the realization that the differ-
ent perturbative string theories are simply different va-
cua of a single theory. We don’t know this grand
theory — but it is probably not a string theory in the con-
ventional sense. In fact we know that in a certain regime
the low energy behavior of this theory is governed by
eleven dimensional supergravity.

One of the things which we have learnt in the ‘duality
experience’ is the ability to predict accurately the prop-
erties of a certain class of states at strong coupling. As
we will see soon, this ability will turn out to be crucial
in understanding black holes. The second important out-
come has been the discovery of a class of solitonic ob-
jects, called D-branes which turned out to be very useful
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examples of black holes where nonperturbative results
could be derived.

Let us first discuss the regime of parameters we need
to work in order to understand the black hole problem
from a microscopic viewpoint. Consider for example a
neutral black hole of mass M in four dimensions. The
space-time metric is given by

i dr2 : y) ?)
dr +-(—— sems T d€2s3.
! )

r

Here dQ°, is the metric on a unit 2-sphere and G is
Newton’s constant. The horizon is at ry = 2GM and the
curvature at the horizon is of the order of 1/(GM)2.

In string theory, the coupling is given by a dimension-
less coupling constant g and there is only one length
scale in the theory, the string length [, which is related
to the string tension T by T, = 1/(2xl°,). We can exXpress
every dimensional parameter in the four dimensional
reduction of the theory in terms of this string length
(e.g. the size of the compact directions can be expressed
In units of the string Iength). Thus on one-dimensional
grounds we must have

ds® = -—(1 ZGMJ

r

(2.6)

G~gi% and M~

2.7
; (2.7)

The dimensionless quantity which controls the gravita-
tional field of the black hole is therefore given by g’m.

Since g is the coupling constant of the theory, the
classical limit is given by g — 0. However to describe a
nontrivial classical solution g’m must be finite, i.e. one
must have

g >0 m-ooe g'm=finite. (2.8)
In fact, when g“’m >> 1 the horizon is large and the cur-
vature at the horizon 1s weak — this is the regime where
we can trust the semiclassical calculations of Hawking.
Thus the effective coupling we are interested in is g*m —
the semiclassical limit is the regime where this effective
coupling is strong.

On the other hand we might expect that the micro-
scopic description of black holes as states in a quantum
theory would be tractable when the effective coupling is
weak. In this regime the geometric description of a
black hole is not very good and Hawking’s semiclassical
results do not apply. If our microscopic results about
black hole states were valid only in this limit, there
would be no way to make contact with the semiclassical
picture and we would not be able to decide whether
large black holes have a microscopic description.

Fortunately string theory provides examples of black
hole states for which special symmetry properties ensure
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that we can reliably extrapolate weak coupling answers
to the strong coupling domain. These happen to be
charged black holes. At least for this class of black
holes, string theory does provide a microscopic descrip-

tion which explains the thermodynamic behavior ex-
actly.

3. D-branes

The perturbative spectrum of string theories consists of
the various normal modes of a string. However, string
theory is not a theory of strings alone. Once one goes
beyond perturbation theory one finds that there are vari-
ous kinds of extended objects in the spectrum: these are
generically branes. The existence of these objects is in
fact intimately related to and required by duality symme-
tries of the theory. p-branes are p dimensional extended
objects whose worldvolume is therefore p + 1 dimen-
sional. They have a finite energy density determined in
terms of the string tension and the string coupling. Out
of the p-branes, only one of them, the fundamental 1-
brane, also called the F-string, 1s present in the pertur-
bative spectrum of the theory. All the others are soli-
tonic states.

If a p-brane is wrapped around a p-dimensional com-
pact manifold, the object has a finite total mass. At en-
ergies much smaller than the scale of compactification,
this will appear as a point like object in the non-compact
world. Since this has a mass, 1t will produce a gravita-
tional field. Furthermore a p-dimensional extended ob-
ject naturally couples to a p + 1 form gauge field via a
coupling

Jdaﬂlﬁl---ﬂpHA (31)

HIK2---Kp+]?

where the integration is over the (p + 1)-dimensional
worldvolume of the p-brane. This is similar to the way a
point particle couples to a Maxwell gauge field. In other
words, such p-dimensional objects can also produce a
p + 1 form gauge field. In fact the type of p-branes pres-
ent in the spectrum of a particular string theory 1s
largely dictated by the presence of the corresponding
gauge field in the perturbative spectrum.

There is a special class of such solitonic states which
has played an important role in black hole physics.
These are called D-branes and appear in what are called
the Type-II string theories. There are two Type-II theo-
rics, named Type-1IA and Type-lIB, respectively. The
D-branes which appear in Type 1IA are of dimenstonal-
ity p with p =0, 2, 4, 6 with p + 1 dimensional world-
volumes and produce p + | form gauge fields. They will
be called D-p-brancs. The D-branes which appear in
Type-1IB theory are of dimensionalities 1, 3, 5 and pro-
duce rank-2, rank-4 and rank-6 gauge ficlds, The possi-
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ble values of p are thus determined by the presence/
absence of the corresponding gauge field in the spec-
trum. Note that some of these gauge fields could be
‘magnetic’ in nature. Thus the D-1 brane produces
an electric type rank-2 gauge field, while a D-5 brane
produces a magnetic type rank-2 gauge field. However
the gauge field strength of the latter has rank-3 and this
is dual, 1n ten dimensions, to a rank-7 field strength
which in turn comes from a rank-6 gauge field — the
one appropriate for coupling to a five-dimensional ob-

ject. In this article we will deal mostly with Type-IIB
theory.

3.1 Classical solutions

In the semi-classical domain discussed above, D-p-
branes are represented by classical solutions of the low

energy supergravity equations of motion. The string
metric i1s given by

- 9
ds? =[A(r)]‘QL -{ —f‘}—)d12+ de"dx"

rﬂ.

i=10-p
2
HAOT 22—+ 12002, |. (3.2)
(1-%

Here the brane is along the directions x'°? ... x°, n =7~

9-p .
p, r is the transverse radial coordinate, rt =Z__lp(x')2,
and A(r) 1s the function, 1.c.
rﬂ
A(r)=1+-sinh’a. (3.3)
r
The branes also produce a dilaton, 1.e.
3-p
e =[AN] T, (3.4)
and a p + 1-rank gauge ficld with the components
i roﬂ .
A{)‘(]g,p)___-g = "5';; sinh (2(1) (35)

This is Coulomb’s law in the transverse directions.
Since thcre are both electrically and magnetically
charged D-branes the charge is quantized, in terms of
integers (2, given by

J ] sinh2a g
Qf’ —_ e = .

(3.6)
878 (4mar) r(3) "
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It is sometimes uscful to visualize a solution with inte-
eer (0, as a coltection of O, objects of unmit charge each -
in commeon parlance @, D-p-brancs,

The solution (3.2) 1n fact represents a black p-brane
extended along the directions <0 xg, which becomes
a black hole when these longitudinal directions are com-
pactified on say a p-torus. In terms of the noncompact
(10 - p) dimensional world, this object carries an elec-
tric Maxwell hike charge, since the rank-(p + 1) gauge
field (3.5) bccomes an electric potential under dimen-
sional reduction and Q, is the quantized charge.

The horizon is at r = rp; has the shape of §™' x 7" and
has an area in Einstein metric given by

Au=V, Q.4 ro™ ! cosha, (3.7)
where V, 1s the volume of the p-compact directions. The
standard semi-classical methods leading to Hawking

radiation apply to this particular black brane, and the
Hawking temperature 1s

"n
Ty = : 3.8
H 4ty cosha 3.8)
The Beckenstein—Hawking entropy is
A 27A
Spu = —+ = =+, 3.9
BH 4G Kz ( )

Viewed as a black hole in the noncompact directions,
the horizon area is Ay/V,, but the lower dimensional
Newton constant is also decreased by the same factor
(see eq. (2.4)) so that the entropy of this black hole is
the same as that of the black brane.

There ts a special limit of the classical solution which
1s of great importance to what follows. This is the ex-
tremal limit defined by

ro— 0 a — oo (ry" sinh® a =r,” = fixed). (3.10)
In this limit the mass and charge of the object remains
finite, while the area and the temperature goes to zero. It
1s easily seen that in this limit the mass of the object is
proportional to the charge.

The main significance of the extremal limit is that in
this limit the solution retains some of the supersymme-
tries of the original theory. Superstring theory is super-
symmetric. However a generic classical solution would
break the supersymmetry. The extremal solution retains
half of the supersymmetries and are examples of what
are called BPS states. BPS states are the lowest energy
states of the system with a given value of the charge -
these are the ground states in this sector. Because of
this, these are stable states —a fact that is consistent

with the fact that the Hawking temperature is zero -
these extremal black branes do not radiate.

1652

L R e ! .

3.2 Microscopic theory

In string theory D-branes of course appear as quantum
states. These are in fact quantum states of a class of
solitonic objects®. The description of the low energy
quantum excitations of such objects 1s remarkably sim-
ple. Clearly the collective dynamics of these low energy
modes would be governed by a (p + 1)-dimensional field
theory (one of them being time), just as the dynamics of
point like solitons are described by a one dimensional
fteld theory. It turns out that for a collection of D-branes
of charge Q, this field theory, which lives on the brane
1s 1n fact a gauge theory with a gauge group SU(Q,) with
16 supersymmetries’. The coupling constant of this
Yang-Mills theory is given by

g'ym =g (3.11)
Therefore the limit when this object has a reliable semi-
classical description in terms of the classical solution

described above may be read off from the solution of eq.

(3.2) and the expression for the charge given in eq.
(3.6),

g—>0 @, gQ,=fixed and large. (3.12)
From twenty we see that this 1s a well-known limit in
gauge theories, the 't Hooft large-N limit

gym >0 Qp > oo SZYMQP = fixed, (3.13)

and the ’t Hooft coupling gZYMQp 1S strong. To under-
stand the microscopic behavior of these D-p-black
branes we have to understand the strong coupling limit
of this supersymmetric gauge theory.

In fact, this gauge theory is 1n turn a low energy de-
scription of a theory of open strings whose ends are
stuck on the brane®. This is how D-branes are defined in
string theory. Just as the low energy spectrum of closed
strings i1s described by supergravity, the low energy
spectrum of a theory of open strings is given by a super-
symmetric Yang-Mills theory. Since the ends of the
open strings are constrained to move along the brane,
the super Yang—Mills theory lives on the (p + 1) dimen-
sional worldvolume of the brane.

Ground states of the D-p brane system are then de-
scribed by the ground states of the Yang—Mills theory,
while the excited states are described by the excited
states of the Yang—Mills theory. Thus if we can obtain
the spectrum of this gauge theory we will know the de-
generacy of states and see whether the Beckenstein—
Hawking entropy is indeed given by the Boltzmann for-
mula.

However the system is described by the semiclassical
solution only when the 't Hooft coupling 1s large. It 1s
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casy to determine the spectrum and hence the degenera-
cies of states at weak coupling — but we don’t know how
to solve the theory at strong coupling. How do we then
compare the microscopic results with the classical an-
swers?

This 1s where the supersymmetry of the extremal so-
lutions comes to the rescue. Because of supersymmetry,
the BPS states of any theory have well-known renor-
malization properties. In particular the relationship be-
tween the mass and the charge follows solely from the
supersymmetry algebra and 1s therefore an exact relation
in the full quantum theory. If we know that a BPS state
with a given charge is present in the perturbative spec-
trum, we know that such a state exists at strong coupling
as well, and 1t would continue to have the same mass —
even though it would be difficult to write down the state
in terms of the free field operators. Thus the number of
BPS states for a given value of the charge is independ-
ent of the value of the coupling and therefore can be
evaluated at weak coupling. For such states, we can per-
form a weak coupling calculation and compare them
with the semiclassical answer.

A collection of @, D-branes in their BPS ground state
as described by the classical solution eq. (3.2) has a
rather small degeneracy — in fact, 1t has precisely 256
states. However one can construct other BPS states by
introducing a momentum along one of the brane direc-
tions. Since the brane directions have been taken to be
compact, this momentum is necessarily quantized

N
P=—, (3.14)
R

where R is the radius of this compact direction and N 1s
an integer. Under dimensional reduction, this momen-
tum becomes a Kaluza-Klein charge, and we now have a
black hole with two kinds of charges: a charge @, under

Figure 2. Open strings on D-brancs.,
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the Maxwell gauge field arising from the dimensional
reduction of the rank-(p + 1) gauge field in ten dimen-
sions and a Kaluza-Klein charge N. The corresponding
classical solution may be obtained from (3.2) by per-
forming a Lorentz boost in the direction of momentum
and then taking the extremal limit. It turns out that
even after this the horizon area is zero in the extremal
[imit and therefore there is no Beckenstein-Hawking
entropy.

On the other hand, the BPS state of such a two charge
state has a macroscopically large degeneracy. This
is what was shown in® for states similar to D-brane
states in heterotic string theory. It appears that this de-
generacy does not have anything to do with black hole
entropy!

This conclusion turns out to be wrong. The point is
that in the extremal limit the horizon has shrunk to a
point. The curvatures are large at this horizon and there
1s no reason why one should trust the supergravity solu-
tion here. In fact since the curvatures are large com-
pared to the string scale, stringy effects will be
important. In fact it was argued in® that due to stringy
corrections we should define the Beckenstein—-Hawking
entropy not as the area of the event horizon, but the area
of a ‘stretched horizon’. The stretched horizon is the
place where the curvature is of the order of the string
scale and has a nonzero areca. Sen showed that the area
of this stretched horizon is in fact proportional to the
logarithm of the degeneracy of states. However there
was no way to determine the proportionality constant
and therefore no definitive way to understand whether
black hole entropy has a microscopic origin in terms of
the degeneracy of string states.

It 1s clear now that to have a reliable microscopic cal-
culation of the degeneracy of states BPS states are usc-
ful. On the other hand for the corresponding classical
solutions to remain reliable at the horizon we need to
have BPS solutions which have large horizon areas. If
we can find examples of such black holes 1n string the-
ory we will be able to test the conjecture that black
holes are string statcs and the black hole entropy origi-
nates from the degeneracy of such states.

4. The five dimensional black hole: Classical
solution

The first example of such a black hole was a five di-
mensional charged black hole”. This is constructed out
of 05 D-5-brancs along L x, O) D-1-branes along X
and N units of momentum along x°. When dimensionally
reduced this becomes a five dimenstonal black hole with
three hinds of charges. The coordinates AV are co-
ordinates on a S-torus, The classical solutton for the
general non-extremal version is given by the following
s{reng metric
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ds? = 4(ry At
2

-E'f-(cosh gdt + sinh adxs)z]

[-dr2 +dxs +
r

z"h(r)fAs(*'*)‘%[(d.:::‘s)%....(m‘;‘)2 ] (4.1)

AN A(n? +r2dQ2 |,

where

.
A () =1+"Zsinh? a,,
’, (4.2)
As(r) = 1+-2-sinh? a5
r

There 1s also a nontrivial dilaton ¢ and a two-form

gauge field with gauge field strength H; having both
magnetic and electric components, i.e.

o2 — [Al(r)]{
As(r)

H = (rf sinh 2as)e; + (7f sinh 2a;) * &5,

(4.3)

where £3 i1s the volume form on the three dimensional
sphere in the transverse space and * denotes the six-
dimensional dual in the six-dimensional space-time
formed by the transverse space and x’. The charges are
related to the parameters in the classical solution by

‘/4?'0 sinh 2(11

G = 327%0a”
2
ry sinh 2a
Qs =————2, (4.4)
200
Y, V4RZ sinh 20
R
g a
6 9

lere V4 is the volume of the four torus along x° ... x°,
ind R is the radius of the x° direction. The mass M,
Jeckenstein-Hawking entropy Sgy, and the Hawking
emperatures, respectively are:

RV,rg
M = ——==——-(cosh 2a, + cosh 2a5 + cosh 20),
327 e“ax’
Sgy = 27,J/O,0s N cotha, coth as coth o, (4.5)
1
TH =

2nry cosha;coshascosho

t 1s then clear that in the extremal limit

ai, As, 0 —> oo ro— 0

654

]2 — rg -‘."!ril'll'l2 a]

2
’s

= finite,
= r# sinh? a5 = finite,

(4.6)

rf =n ’ sinh? o = finite,

the horizon area or Beckenstein-Hawking entropy re-
mains finite, is given by

Sen = 271, JO.O5N,

(4.7)

while the Hawking temperature vanishes. In this extre-
mal limit the mass becomes a sum of the contribution of
the masses from the 5-brane, 1-brane and the momen-
tum. It 1s also clear from the metric that in this limit, the
momentum along x° is made out of only left moving
waves, since only the combination (dz + dx°)? appears in
eq. (4.1).

In the following we will be interested in a special de-
parture from extremality, where we keep @y, @5 = o, but
ro, 0 finite. This means that we have both left and right
moving waves. Indeed the thermodynamic quantities
split up into sums of left and right moving parts, i.e.

SBH=SL+SR E=E1+E5+EL+ER
1 1{1 1
— = | —+—
Iy 2\IL. T
erirsrﬂe_a
SLR = 4 ’
16 g2a’
rﬁﬂiﬂ (4.8)
TL,R - ’
27nrs
43’54 ‘/4 R?"OZE_?H
ErR=——"
g a
N
EL ='E+ ER'

In the expression (4.8) E,, Es stands for the energies of
the extremal 1-branes and S5-branes respectively. Note
that

(4.9)

a relation which will be useful later.

The semi-classical picture of these black holes is reli-
able when the charges are all large, g > 0 Q,;, Os,
N — oo with (g0Q,), (20s) and gzN held fixed and large
The extremal state is a ground state in the given charge
sector and has zero temperature. When we excite this,
we have a nonzero temperature and the black hole starts
radiating. The radiation will continue till the black hole
loses enough mass so that it becomes extremal again -
this will take an asymptotically long time. The important
point is that for large values of the charges, the curva-
tures at the horizon are weak at all stages of the evolu-
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tion and one would expect Hawking’s results to be reli-
able. The information loss problem can be addressed 1n
this example and one may hope that one can have a de-

finitive resolution of the problem since high curvatures
are never encountered.

5. Microscopic theory of the five-dimensional
black hole

The microscopic theory of this black hole may be writ-
ten down from what we know about D-branes. We have
a system of 1-branes, 5-branes and momentum which
forms a bound state. The low energy dynamics 1s again
described by a gauge theory, which has ‘matter’ fields in
addition to gauge fields. Determining the dynamics of
this theory is rather complicated, but the final result is
rather simple. The low energy modes are just massless
quanta of waves moving along the 1-brane. However the
1-brane is now multiply wound Q, QOs-times around the
x° direction. What this means is the following: these
modes can carry momenta which are quantized not in
units of 1/R but in units of 1/Q,0sR, though the total
momentum is quantized in units of 1/R. These quanta
have four ‘flavors’. This is because the 1-brane can os-
cillate freely in the four directions lying on the four
torus (in the x° ... x9) which is still transverse to the 1-
brane but lying on the 5-brane. These account for four
polarizations. The 1-brane cannot oscillate freely in the
direction transverse to the five brane since the system 1is
bound. |

The extremal limit corresponds to the situation when
all the quanta are moving in the same direction. They
are all moving at the speed of light and cannot catch up
with one another — which is an intuitive explanation why
this state is stable. Nonextremal states of the type dis-

Dl
]!

D3

Extremal non-extremal

Figure 3. Extremal and non-extremal states of D1-D5 system,
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cussed above (with a;, as still infinite) correspond to
waves in both directions: this seems to tie up with the

clean left-right separation of the semiclassical thermo-
dynamic quantities.

5.1 Thermodynamics

What we have 1s statistical mechanics of massless parti-
cles 1n one spatial dimension and we have to figure out
the degeneracy of states with a given total energy € and
total momentum P. The total energy of this gas is iden-
tified with the quantity £y + Er of the classical solution
while the total momentum is the difference E; — EgR.
Likewise one can introduce two ‘temperatures’, Ty and
Tr. Note that the temperature

1 1{1 1
— T — _--.-+__,
T 2(71 TR]

which is conjugate to the total energy. The reason why
we have different left and right moving temperatures 1s
that there is a net momentum in the system, so that there

(5.1)

is another intensive quantity @ which is conjugate to the

total momentum

(5.2)

The effective coupling constant of this gas 1s geg ~ 0.

When the effective coupling is weak we have a free
gas and the statistical mechanics may be easily worked
out. We have four flavors of bosons and four flavors of
fermions. The thermodynamic relations which follow are

Sf — (ZJTEl L)&

(5.3)

In the eq. (5.3) i stands for L or R and L is the size of
the one-dimensional line on which the gas lives. In our
case, L =2mQ,0sR; since we have a l-brane wound
0,05 times around x> which has a radius R.

In the extremal limit, we only have (say) right movers
and the energy is equal to the momentum

N

ER = (), EL=P='}"?'"- (54)

Note the momentum is integer quantized, since this 1s
the total momentum as well. Then eq. (5.3) implies that

Te =Sg =0, T=0, (5.5)

while the total entropy is just the left moving prece

{65)
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(5.6)

S = SL — E:T..,JQIQ:;;; .

This is exactly cqual to the extremal entropy of the cor-
responding black hole, given by eq. (4.7).

The ncar-extremal system corresponds to a large
number of lcft movers and a few right movers, 1.e. we

have

N n
E[_ = — ———
n .
ER = .
QR

Note that the total momentum P = E;{-Ey is still an inte-
ger. This leads to an entropy

§=2n[ JO,O;N+n+Jnj, (5.8)

which 1s again in agreement with the semiclassical an-
swers for n << V. Since the entropy as a function of the
excess energy over extremality agrees with the semi-
classical answer, the temperature of the gas of bosons
and fermions considered above also agrees with the
Hawking temperature. The agreement of the extremal
entropy was first shown in’ using a related but slightly
different argument. The low energy states of non-
extremal D-branes and the necessity of multiple winding
were found'’. The agreement of non-extremal entropy
and temperature was shown'"'?, and the argument for
multiply wound long string as the effective model of the
five-dimensional black hole was suggested'”.

5.2 Hawking radiation

In the near-extremal situation we have both right and
left moving waves and they can now collide to form a
mode of supergravity which can now leave the brane
system and propagate to the asymptotic region. This
would be then the mechanism of decay of a non-
extremal state back into the extremal state.

In the semiclassical theory, a slightly non-extremal
black hole decays into the extremal black hole by
Hawking radiation. The question is: does the quantum
mechanical decay of the microscopic state described
above accurately describe Hawking radiation?

To obtain the semiclassical decay rate we need to cal-
culate the classical absorption cross-section of the par-
ticular wave. This is in principle a straightforward
problem. One has to solve the relevant wave equation in
the black hole background and calculate what fraction of
an incident wave is absorbed by the black hole. In prac-
tice, however, it 1s rather difficult to perform this calcu-
lation analytically. A great simplification happens when
we consider low energy waves. In this case, it was found
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Figure 4. Hawing radiation mechanism.

in the 1970’s that the absorption cross-section for
massless scalars by four-dimensional black holes of
various kinds approaches the area of the horizon at low

. 14
energies .

Limm__m G'(CU) = AH- (5.9)

This absorption is in fact dominated by the S-wave:
higher angular momenta are suppressed. Likewise for
higher spin fields, the lowest allowed angular momen-
tum dominates the radiation.

The classical absorption problem for the five-
dimensional black hole was first solved by Dhar et. al.”,
and 1t was found once again that the absorption cross-
section 1s exactly equal to the horizon area. It has al-
ready been argued'' that the emission rate of low energy
scalars from the microscopic model was proportional to
the horizon area. It therefore appeared that the micro-
scopic model has a chance of describing Hawking ra-
diation. However, if this is indeed the correct quantum
description of the five dimensional black hole, the rate
of decay must agree exactly, just like the entropy. Oth-
erwise one would be left with some Hawking radiation
which 1s not explained by standard quantum mechanics.
In fact much later it was shown'® that the result of eq.
(5.9) 1s quite general and is valid for (minimally cou-
pled) massless scalar absorption by any spherically
symmetric black hole in any number of dimensions.

However the microscopic description 1s a rather
complicated bound state of D1 and D5 branes with mo-
mentum. Even though the low energy modes are given
by the excitations of a long string as described above,
even the tension of this long string is not known and its
interaction with modes in the bulk would in general de-
pend on the details of the bound state.

It was realized in ref. 17 that the decay rate of certain
scalars is tn fact independent of the details of the bound
state of D1 and D5 branes and is in fact independent of
the effective tension of the long string which describes
the low energy excitations. Examples of such modes are
the components of the ten dimensional graviton along
the 5 brane, but perpendicular to the direction of the 1-
brane, the antisymmetric tensors with these same polari-
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ations and the dilatons. Take for example the longitu-
inal gravitons (note that these are scalars from the
oint of view of the five-dimensional noncompact
pace). The waves on the long string are described by
unctions X' (6% where =1, ... 4 denote the four di-
ections on the 7° normal to the long string and % de-
iote the coordinates on the worldsheet of the long
tring. The kinetic energy would be of the form d,X'
°X’. The coupling of these waves to the metric compo-
ients gy 1s in fact determined at low energies by a prin-
‘iple of equivalence. This would be

%jdzogU(X)aaX’a X, (5.10)

where 7 1s the tension of the long string. the interaction

retween the waves and the metric mode may be then
read off by expanding

gu =Ny + hy. | (5.11)

Once 7 is absorbed into the field X! to have it normal-
1zed in the standard fashion, 1t also disappears from the
interaction term Ay aXIaXJ

The calculation of the decay rate is now straightfor-
ward.

1. First obtain the decay rate for given initial momenta
of the quanta of long string oscillations (p, g) and
momentum of the outgoing bulk mode. This 1s given
by T'(p, g, k). In the case where the outgoing particle
has zero momentum along the 1-brane and the T* (this
means it is a neutral scalar from the five dimensional
point of view), one of the modes on the long string
must be left moving, while the other must be right
moving.

2. Since we are interested in the decay rate regardless of
the initial state, we have to average over initial states.
The initial states are however drawn from a thermal
ensemble with the ‘left’ and ‘right’ temperatures as
defined above. Thus the averaging has to be per-
formed using the relevant distribution functions,

The final cxpression for the decay rate into a massless

scalar with transverse momentum k and hence encrgy
w =kl is!’

2 4 -
_ ks @ w) dk 512
o= br “(2)‘0 ‘*(2)(2::)4’ G129

where the left and right movers have the distribution
functions

]

Em”L‘R - ’

PL,R("“) o= (5.13)
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This has a drastic simplification for low energies
w << Ty and Ty >> Ty but w ~ Tg. Then one has the tem-
perature T ~ 2Tg. Recalling the feature of one-
dimensional thermodynamics that the temperatures are
proportional to the entropy — for left and right movers
separately, eq. (5.3), and using the fact that we have
already shown that in the near extremal limit the entropy

agrees with the Beckenstein—-Hawking formula, we get
in this limit

Ay d%%
ewlT ___‘l (27_[)4 l

(k) = (5.14)

Comparison with the detailed balance relation given in
eq. (1.4) shows that the microscopic absorption cross-
section 1S 0 = Ay — in exact agreement with the semi-
classical answer, eq. (5.9).

What is even more remarkable is that the microscopic
answer of eq. (5.12) agrees with the semi-classical an-
swer for slightly larger energies. Now the absorption
cross-sections are dependent on the energy, which is
why they are called grey body factors. In a certain re-
gime the classical grey body factors can be computed
for the five-dimensional black hole and the result is in
perfect agreement with eq. (5.12).

These results for the entropy, temperature and emis-
sion rates have been extended in several directions.
They have been shown to be valid for four dimensional
charged black holes of a certain class and the micro-
scopic picture of Hawking radiation has been shown to
hold for a variety of other particles, like charged parti-
cles. All such cases where exact agreement exists have
the feature that the cross-section approaches a constant
at low energies. For some other kinds of particles, the
results are not so accurate. In several cases one can de-
termine the energy dependence correctly from the mi-
croscopic model, but not the coefficients. It is believed
that the details of the model start becoming important
for such emissions.

In fact the above results have been derived from the
effective ‘long string’ model. A complete and satisfac-
tory derivation of this model starting from the gauge
theory living on the intersecting branc system is still
lacking, though some progress has been made in this
direction' .

6. Why docs it work?

What is remarkable about the above calculations is that
they are all performed in the limit where the elfective
theory of the branes which form the bliuck hole 1s weakly
coupled. On the other hand, we have argucd that 1 1s in
the regime of strong coupling that we expect the INICro-
scopic model 1o agree with the senuclassical answers.
The physical picture for Hawking radiation 1n these two
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regimes are completely different. We understand why the
derivation of the extremal entropy worked —~ as explained
above this is because of supersymmetry. Why do the re-
sults for slightly non-extremal states, especially the emis-
sion rates agrec so well with the classical answers? In the
noncxtremal case the state 1s not supersymmetric and one
might expect that the weak coupling results have nothing
to do with the strong coupling resuits.

This 1s not very well understood at this moment.
However there are some results about higher order cor-
rections which indicate that while we are dealing with
states which are not supersymmetric, the theory is still
supersymmetric and if the departure from supersymme-
try is not large, then at low energies some quantities do
not get corrected as the coupling gets strong .

By the same token, very little is known about neutral
black holes. In string theory these appear as highly ex-
cited states of (unwound) strings. These are states which
are very far from supersymmetry and weak coupling
calculations would have really nothing to do with the
semiclassical answers. Nevertheless, some progress has
been made by viewing these objects in M-theory. The
results are certainly not as accurate as for near-extremal
black holes. '

7. Concluding remarks

We now know that at least a class ot large black holes
seem to behave as perfectly ordinary objects. It 1s most
likely true that for this class of black holes there is no
information loss problem. While we do not know much
about neutral black holes, it would be rather shocking if
they too are not described as states in a unitary quantum
theory. To say the least, it has been shown that informa-
tion loss 1s avoidable in a consistent quantum theory
which includes gravity: string theory. Turning the argu-
ment around, one might say that if string theory failed to
provide a statistical basis for black hole radiation in a
regime where it should have (i.e. for near-extremal black
holes), one would have to discard the theory as a quan-
tum theory of gravity. It is remarkable that almost every-
thing we know about string theory went iInto our
understanding of black holes: extra dimensions, infinite
tower of states, dualities. Features of string theory which
appeared to be unaesthetic played a crucial role in this!
Black Hole Thermodynamics and Hawking Radiation
posed a ‘disprovable’ statement in string theory, and
string theory has indeed passed an important test.

What is lacking is an understanding of local properties
in a gravitational field in terms of string theory. We do
not understand what happens to an object as it falls
through the horizon of a black hole. We do not under-
stand in any detail how is information actually retrieved
and why are the standard arguments for information loss
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false. The calculations discussed above are of course
correct — but these are weak coupling calculations which
happen to give the right answer in the strong coupling
limit as well. The physical picture is, however, still at
weak coupling — and this physical picture has nothing to
do with the physics in a black hole background. In a
sense we have been too lucky: we got the answers with-
out having a picture.

However, like in all other areas of physics, a physical
picture is necessary in the right domain. Recently there
have been some developments which are leading to such
a picture. In this article we have seen that the low en-
ergy dynamics of black holes are described by gauge
theories. In weak coupling we may think of the gauge
theory as one living on the brane system. These degrees
of freedom were then coupled to separate degrees of
freedom 1n the bulk: the latter formed the particles
which the black hole can emit. Recently, it has been ar-
gued that in a certain low energy limit this is not what is °
happening. Rather the gauge theory ttself contains, in its
Hilbert space, the bulk modes*’. This means that in this
limit, gauge theory contains gravity. In fact the gravity
description is good when the coupling is large. Ques-
trons in gravity may be then translated into questions in
gauge theory and one may have a chance to answer de-
tailed local questions about space-time physics in this
manner. This proposal 1s vigorously pursued at this mo-
ment and it remains to be seen whether this will lead to
a definitive resolution of the information loss problem.
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