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It is believed that the magnetic field of the Sun is
produced by the dynamo process, which involves
nonlinear interactions between the solar plasma and
the magnetic field. After summarizing the main char-
acteristics of solar magnetic fields, the basic ideas of
dynamo theory are presented. Then an appraisal is
made of the current status of solar dynamo theory.

1. Introduction

IN elementary textbooks on stellar structure, a star 1s
usually modelled as a spherically symmetric, non-rotating,
non-magnetic object. It is mainly the magnetic field which
makes our Sun much more intriguing than such a textbook
star. Several other reviews in this special section should
convince the reader of this. It comes, therefore, as no
surprise that one of the central problems in solar physics
is to understand the origin of the Sun’s magnetic field.
The solar dynamo theory attempts to address this prob-
lem. The basic idea of this theory is that the solar mag-
netic fields are generated and maintained by complicated
nonlinear interactions between the solar plasma and
magnetic ficlds. As we shall see in this review, there are
still many difficulties with this theory and we are still far
from having a completely satisfactory explanation of why
the Sun’s magnetic field behaves the way it does. How-
ever, no alternate theory of the origin of solar magnetism
has so far been able to explain even a fraction of what
dynamo theory has explained. Some of us, therefore, are
still struggling to put the solar dynamo theory on firmer
footing, with the fond hope that we are probably appro-
ximately on the correct path.

The aim of this special section is to make the readers of
Current Science aware of the present status of solar
physics. The solar dynamo theory is a fairly technical
subject. It is next to impossible to write a review that will
provide a comprchensive introduction to this subject for
an average reader of Current Science and, at the time,
survey the rescarch frontiers. Still a partial aitempt 1s
made here at this next-to-impossible task of presenting the
subject in a way which should be understandable — 1f not
to a general reader of Current Science — at least 1o a
reader with some familiarity in physics and flutd mecha-
nics. It is left to the rcaders to judge if the author has
failed completely or only modcerately. Needless 10 say, no
attempt is made at a complete coverage of the funda-
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mentals. After summarizing the relevant observations in
the following section, we write just enough about the
basics in the next two sections to give a rough idea of
what is going on. Then in the last three sections we
discuss some of the important issues from current research
frontiers.

Dynamo theory is based on the principles of magneto-
hydrodynamics (MHD), 1n which hydrodynamics equa-
tions are combined with Maxwell’s electrodynamics
equations. Comprehensive introductions to MHD can be
found in the books by Alfvén and Filthammar', Cowling’,
Parker’, Priest4, and Choudhuri’. Some books devoted
exclusively to dynamo theory are by Moffatt®, Krause and
Riadler’, and Zeldovich et al®. We also refer to the review
articles on the solar dynamo by Ruzmaikin’, Gilman'®,
Hoyng”, Brandenburg and Tuominen'?, and Schmitt".

2. Relevant observations

In 1908 Hale' discovered the first evidence of Zeeman
effect in sunspot spectra and made the momentous announ-
cement that sunspots are regions of strong magnetic fields.
This is the first time that somebody found conclusive
evidence of large-scale magnetic fields outside the Earth’s
environment. The typical magnetic field of a large sunspot
is about 3000 G.

Even before it was realized that sunspots are seats of
solar magnetism, several persons have been studying the
occurences of sunspots. Schwabe'® noted that the number
of sunspots seen on the solar surface increases and
decreases with a period of about 11 years. Now we
believe that the Sun has a cycle with twice that peried, 1.e.
22 years. Since the Sun’s magnetic ficld changes its
direction after 11 years, it takes 22 years for the magnetic
ficld to come back to its initial configuration. Carrington'®
found that sunspots scemced to appear at lower and lower
latitudes with the progress of the solar cycle. In other
words, most of the sunspots in the carly phase of a sofar
cycle are scen between 30° and 40°. As the cycle advan-
ces, new sunspots are found at increasingly lower RUE
tudes. Then a fresh halt-cycle begins with sunspots
appearing again at high latitudes, Individual sunspots live
rom a few days 1o a foew weeks,

After finding magnetic ficlds in sunspots, Hale and his
coworkers' made another significant discovery. They
found that often two large sunspots are seen side by side
and they invariably have opposite polaries. The line
joining the centres of such Q bipolar sunspot par 18
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usually ncarly parallel to the solar ecquator. Hale's
coworker Joy, however, noted that there is a systematic
tilt of this linc with respect to the equator and that this tilt
increases with latitude'’. This result is usually known as
Joy's Law. It was also noted'’ that the sunspot pairs have
oppusite polaritics in the two hemispheres. In other words,
if the left sunspot in the northern hemisphere has negative
polarity. then the left sunspot in the southern hemisphere
has positive polarity. This 1s clearly seen 1n Figure 1,
which is a magnetic map of the Sun’s disk obtained with a
magnetogram. The regions of positive and negative
polarities arc shown in white and black respectively. The
polarities of the bipolar sunspots in any hemisphere get
reversed from one half-cycle of 11 years to the next half-
cycle.

After the development of the magnetograph by Babcock
and Babcock'®, it became possible to study the much
weaker magnetic field near the poles of the Sun. This
magnetic field is of the order of 10 G and reverses its
direction at the time of solar maximum'’ (i.e. when the
number of sunspots seen on the solar surface ts maxi-
mum). This shows that this weak, diffuse field of the Sun
Is in some way coupled to the much stronger magnetic
field of the sunspots and 1s a part of the same solar cycle.
Low-resolution magnetograms show the evidence of weak
magnetic field even In lower latitudes. The truc nature of
this field is not very clear. It was found”® that the mag-
netic field on the solar surface outside sunspots often

exists in the form of fibril flux tubes of diameter of the
order of 300 km with field strength of about 2000 G

A magnetogram unage of the full solar disk. The regions

Figure 1.
with posttive and negative magnetic polanities are respectively shown
in whtte and black, with grey indicating regions where the magnetic
ficld 1s weak. Courtesy: K. Harvey.
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(large sunspots have sizes larger than 10,000 km). One
is not completely sure if the field found in the low-
resolution magnetograms is truly a diffuse field or a
smearing out of the contributions made by fibril flux
tubes. Keeping this caveat in mind, we should refer to the
ficld outside sunspots as seen in magnetograms as the
‘diffuse’ field. It was found®' that there were large uni-
polar matches of this diffuse field on the solar surface
which migrated towards the pole. Even when averaged
over longitude, one finds predominantly one polarity in a
belt of latitude which drifts pc}lcwardszg'23 . The reversal of
polar field presumably takes place when sufficient field of
opposite polarity has been brought near the poles.

Figure 2 (taken from Dikpati and Choudhuri®®) shows
the distribution of both sunspots and the weak, diffuse
field in a plot of latitude vs. time. The colour shades indi-
cate values of longitude-averaged diffuse field, whereas
the latitudes where sunspots were seen at a particular time
are marked by vertical black lines. The sunspot dis-
tribution 1n a time-latitude plot is often referred to as a
butterfly diagram, since the pattern (the vertical black
lines in Figure 2) reminds one of a butterfly. Such
butterfly diagrams were first plotted by Maunder™.
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Figure 2. Colour-shades showing the latitude-time distribution of
longitudinally averaged weak, diffuse magnetic field (8 i1s in Gauss)
with a ‘butterfly diagram’ of sunspots superimposed on it during the
interval from May 1976 to December 1985. Reproduced from Dikpani
and Choudhuri®?,
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Historically, most of the dynamo models concentrated on
explaining the distribution of sunspots and ignored the
diffuse field. Only during the last few years, it has been
realized that the diffuse fields give us important clues
about the dynamo process and they should be included in
a full self-consistent theory. The aim of such a theory
should be to explain diagrams like Figure 2 (i.e. not just
the butterfly diagram).

We have provided above a summary of the various

regular features in the Sun’s activity cycle. One finds lots

of irregularities and fluctuations superposed on the under-
lying regular behaviour, as can be seen in Figure 2. These
irregularities are more clearly visible in Figure 3, where
the number of sunspots seen on the solar surface is plotted
against time. Galileo was one of the first persons in
Europe to study sunspots at the beginning of the 17th
century. After Galileo’s work, sunspots were almost not
seen for nearly a century*®!

It may be noted that all the observations discussed
above pertain to the Sun’s surface. We have no direct
information about the magnetic field underneath the Sun’s
surface. The new science of helioseismology, however,
has provided us lots of information about the velocity
field underneath the solar surface. For an account of this
subject, the readers may turn to the reviews by Chitre and
Antia, and by Christensen-Dalsgaard and Thompson. We
shall have occasions to refer to some of the helioseismic
findings in our discussion later. It is to be noted that heat
1s transported by convection in the outer layers of the Sun
from about 0.7 Ry to Ry (where Ry is the solar radius).

120
I 100
! 80
&0 60
40 | \ . 40
23 . Al AA A N\ Rg
1610 1630 1650 1670 1690 1710 1730
160
140
120 ‘ 120
100
&)
60 60
40 40
3 AVAWIVA'NEE
0 0
1730 1730 1770 1310 1830 1850
200
180
160
140 140
120 120
100 100
80 80
60 F 60
40 40
20 ' 20
0 0
1850 1870 1890 1910 1930 1950 1970

Figure 3. The number of sunspots seenan a year plultLd against the
year for the period 1610-1975. The oniginul figure is due to John A,

Eddy. Reproduced from Moffatt®.
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This region is called the convection zone, within which
the plasma is in a turbulent state. The job of a theorist
now i1s to construct a detailed model of the physical pro-
cesses 1n this turbulent plasma such that all the surface
observations of magnetic fields are properly explained — a
farrly daunting problem, of which the full solution is still
a distant dream.

3. Some basic magnetohydrodynamics
considerations

The velocity field v and the magnetic field B in a plasma
(regarded as a continuum) interact with each other accor-
ding to the following MHD equations:

oV 1 B? (B-V)B
—+(v-Vv=—V —_— | — 2
> (v-V)v > p+87£ pp +g+vVv, (1)
B . 5
Y —=VX{vXB)+AV~“B. (2)

Here p 1s density, p is pressure, g is gravitational field, v
1s kinematic viscosity, and
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(3)

Is magnetic diffusivity (o is electrical conductivity).
Equation (1) is essentially the Navier-Stokes equation, to
which magnetic forces have been added. It is clear from
eq. (1) that the magnetic field has two effects: (i) it gives
rise to an additional pressure B*/8m; and (ii) the other
magnetic term (B - V)B/4np is of the nature of a tension
along magnetic field lines.

Equation (2) ts known as the induction equation and is
the key equation in MHD. It has the same form as the
vorticity equation in ordinary hydrodynamics (sce, for
example, § 4.2 and § 5.2 of Choudhuri™). If V, B and L are
the typical values of velocity, magnetic field and length
scale, then the two terms on the RHS of e¢q. (2) are of
order VB/L and AB/L%. The ratio of these two terms is a
dimensionless number, known as the magnetic Reynolds
number, given by

Vi/l. VL
R i == (4)
ABILF A

Since R, gocs as L, it is expected to be much larger in
astrophysical situations than 1t ts in the laboratory. In tact,
usually one finds that R, > 1 in astrophysical systems
and K, <1 1n laboratory-size objects. Hence the be-
haviours of magnetic ficlds are very different in luboratory
plasmas and astrophysical plasmas. Tor example, it s
not possible to have laboratory analogues of the selt-
sustaining magnetic fields of the Earth or the Sua. 1t
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R.. > 1 in an astrophysical system, then the diffusion term
in eq. (2) is negligible compared to the term preceding it.
In ordinary hydrodynamics, when the viscous dissipation
term in the vorticity equation is neglected, we are led to
the famous Kelvin's theorem of vorticity conservation
(see, for example, § 4.6 of Choudhuri’). Exactly similarly,
when the diffusion term in eq. (2) is neglected, it can be
shown that the magnetic ficld is frozen in the plasma and
moves with it. This result was first recognized by Alfvén®’
and is often referred to as Alfvén’s Theorem of Flux-
Freezing.

It is known that the Sun does not rotate like a solid
body. The angular velocity at the equator 1s about 20%
faster than that at the poles. Because of the flux freczing,
this differential rotation would stretch out any magnetic
field line in the toroidal direction (i.e. the ¢ direction
with respect to the Sun’s rotation axis). This is indicated
in Figure 4. We, therefore, expect that the magnetic field
inside the Sun may be predominantly in the toroidal
direction.

We have already mentioned 1in § 2 that energy is
transported by convection in the layers underneath the
Sun’s surface. To understand why the magnetic field
remains concentrated in structures like sunspots instead of
spreading out more evenly, we need to study the inter-
action of the magnetic field with the convection in the
plasma. This subject is known as magnetoconvection. The
linear theory of convection in the presence of a vertical
magnetic field was studied by Chandrasekhar®®. The
nonlinear evolution of the system, however, can only be
found from numerical simulations pioneered by Weiss®.
It was found that space gets separated into two kinds of
regions. In certain regions, magnetic field is excluded and
vigorous convection takes place. In other regions, mag-
netic field gets concentrated and the tension of magnetic
field lincs suppresses convection in those regions. Sunspots
are presumably such regions where magnetic field i1s piled
up by surrounding convection. Since heat transport is
inhibited there due to the suppression of convection, sun-
spots look darker than the surrounding regions.

Figure 4. The production of a strong toroidal magnetic field under-

neath the Sun's surface, g. An initial poloidal field line. b. A sketch of
the field line after it has been stretched by the faster rotation near the

equatorial region.
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Although we have no direct information about the state
of the magnetic field under the Sun’s surface, it is
expected that the interactions with convection would keep
the magnetic field concentrated in bundles of field lines
throughout the solar convection zone. Such a concentrated
bundle of magnetic field lines 1s called a flux tube. In the
regions of strong differential rotation, therefore, we may
have flux tubes aligned in the toroidal direction. If a part
of such a flux tube rises up and pierces the solar surface
as shown in Figure 5 b, we expect to have two sunspots
with opposite polarities at the same latitudes. But how can
a configuration like Figure 5 b arise? The answer to
this question was provided by Parker’® through his idea
of magnetic buoyancy. We have seen in eq. (1) that a
pressure BY8r is associated with a magnetic field. If p;,
and p.. are the gas pressures inside and outside a flux
tube, then we need to have

2
Pouw = Pin + 2 (3)
8

to maintain pressure balance across the surface of a flux
tube. Hence,

Pin < Pout, (6)

which often, though not always, implies that the density
inside the flux tube 1s less than the surrounding density. If
this happens in a part of the flux tube, then that part
becomes buoyant and rises against the gravitational field
to produce the configuration of Figure 5 b starting from
Figure 5 a.

A look at Figure 4 now ought to convince the reader
that the sub-surface toroidal field in the two hemispheres
should have opposite polarity. If this toroidal field rises
due to magnetic buoyancy to produce the bipolar sunspot
pairs, we expect the bipolar sunspots to have opposite
polarities in the two hemispheres as seen in Figure 1.
We thus see that combining the ideas of flux freezing,
magnetoconvection and magnetic buoyancy, we can
understand many aspects of the bipolar sunspot pairs.
We now turn our attention to the central problem — the
dynamo generation of the magnetic field.

A.ﬁ..'

Figure 5. Magnetic buoyancy of a flux tube. a. A ncarly horizontal
flux tube under the solar surface. b. The flux tube after its upper part
has risen through the solar surface.
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4. The turbulent dynamo and mean field MHD

We now address the question whether it is possible
for motions inside the plasma to sustain a magnetic
ficld. Ideally, one would like to solve eqgs (1) and (2) to
understand how velocity and magnetic fields interact

with each other. Solving these two equations simul-

taneously in any non-trivial situation is an extremely
challenging job. In the early years of dynamo research,
one would typically assume a velocity field to be given
and then solve eq. (2) to find if this velocity field would
sustain a magnetic field. This problem is known as the
kinematic dynamo problem. One of the first important
steps was a negative theorem due to Cowling’', which
established that an axisymmetric solution is not possible
for the kinematic dynamo problem. One is, therefore,
forced to look for more complicated, non-axisymmetric
solutions.

A major breakthrough occurred in 1955 when Parker
realized that the turbulent motions inside the solar con-
vection zone (which are by nature non-axisymmetric) may
be able to sustain the magnetic field. We have indicated 1n
Figure 4 how a magnetic field line in the poloidal plane
may be stretched by the differential rotation to produce a
toroidal component. Parker’” pointed out that the uprising
hot plasma blobs in the convection zone would rotate as
they rise because of the Coriolis force of solar rotation
(just like cyclones in the Earth’s atmosphere) and such
helically moving plasma blobs would twist the toroidal
field shown in Figure 6 a to produce magnetic loops 1n the
poloidal plane as shown in Figure 6 6. Keeping tn mind
that the toroidal field has opposite directions in the two
hemispheres and helical motions of convective turbulence
should also have opposite helicities in the two hemi-
spheres, we conclude that the poloidal loops in both
hemispheres should have the same sense as indicated in
Figure 6 c. Although we are in a high magnetic Reynolds
number situation and the magnetic field is nearly frozen in
the plasma, there is some diffusion (especially due to
turbulent mixing) and the poloidal loops in Figure 6¢
should eventually coalesce to give the large-scale poloidal
field as sketched by the broken line in Figure 6 c.

Figure 7 captures the basic idea of Parker’s turbulent
dynamo. The poloidal and toroidal components of the
magnetic field feed each other through a closed toop. The
poloidal component is stretched by differential rotation to
produce the toroidal component. On the other hand, the
helical turbulence acting on the toroidal component gives
back the poloidal component. Parker’ developed a hcu-
ristic mathematical formalism based on these tdeas and
showed by mathematical analysis that these 1dcas worked.
However, 2 more systemic mathematical formulation of
these ideas had to awail a few years, when Steenbeck,
Krause and Ridler” developed what is known as mecan
fiecld MHD. Some of the basic idecas of mecan field MHD

are summarized below,

 CURRENT SCIENCE, VOL.. 77, NO. 11, 10 DECEMBER 1999

. P re——

- Since we have to deal with a turbulent situation, let us
split both the velocity field and the magnetlc field into
average and fluctuating parts, i.e.

v=v+v, B=B+B". (7)

Here the overline indicates the average and the prime

indicates the departure from the average. On substituting

eq. (7) in the induction eq. (2) and averaging term by
term, we obtain

B _ = —
—é—;=Vx(va)+V><e+lV B; (8)

on remembering that vV =1 = 0. Here,

€=v xB’ - (9)

is known as the mean e.m.f. and is the crucial term for
dynamo action. This term can be perturbatively evaluated
by a scheme known as the first-order smoothing approxi-
mation (see, for example, § 16.5 of Choudhuri’). If the
turbulence is isotropic, then this approximation scheme
leads to

£=aB-[VxB, (10)
where
| ————
a=-—--3—-v (VXvVv)T, (11)
a b

C

Figure 6. Different stages of the dynamo process. See ext for

explananion.
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and

1 ;
f==v'-v'r

3
Here 1 is the correlation time of turbulence. On sub-

stituting (10) 1n eq. (8), we get

(12)

%—tli = ?I’x (VXB)+ Vx(aB)+(A+ ﬁ)Vzﬁ.

(13)
It should be clear from this that B is the turbulent
diffusion. This 1s vsually much larger than the molecular
diffusion A so that A can be neglected in eq. (13). It
follows from eq. (11) that @ is a measure of average
helical motion in the fluid. It is this coefficient which
describes the production of the poloidal component from
the toroidal component by helical turbulence. This term
would go to zero if turbulence has no net average helicity
(which would happen in a non-rotating frame).

Equation (13) 1s known as the dynamo equation and has
to be solved to understand the generation of magnetic
field by the dynamo process. A variant of this equation
was first derived by rather intuitive arguments in the
classic paper of Parker’®. The mean field MHD developed
by Steenbeck, Krause and Ridler” put this equation on a
firmer footing. In the kinematic dynamo approach, one
has to specify a velocity field v and then solve eq. (13).
Using spherical polar coordinates with respect to the
rotation axis of the Sun, we can write

v=Q(r,0)rsinfe, +vp, (14)
where £2(r, 0) is the angular velocity in the interior of the
Sun and v, 1s some possible average flow in the poloidal
plane. Until a few years ago, almost all the calculations of
the kinematic dynamo problem were done by taking vp
= (. If this is the case, then one has to specify some
reasonable Q(r, 0) and a(r, 8) before proceeding ta solve
the dynamo eq. (13). In the 1970s almost an industry grew
up presenting solutions of the dynamo equation for
different specifications of 2 and «.

Ditferential
Rotation

Toroidal

Poloidal
Field

Field

Helical

Turbulence |

Figure 7. Schematic representation of Parker’s idea of the turbulent
dynamao.
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The first pioneering solution in rectangular geometry
was obtained by Parker’? himself, He showed that peri-
odic and propagating wave solutions of the dynamo
equation are possible. Presumably this offers an explana-
tion for the solar cycle. Sunspots migrate from higher to
lower latitudes with the solar cycle because sunspots are
produced (by magnetic buoyancy) where the crest of the
propagating dynamo wave hes. Parker’® found that the
parameters o and £ have to satisfy the following condi-
tion in the northern hemisphere to make the dynamo wave
propagate in the equatorward direction (so as to explain
the butterfly diagram of sunspots):

o—<(.

ar (15)

Steenbeck and Krause™ were the first to solve the dynamo
equation in a spherical geometry appropriate for the Sun
and produced the first theoretical butterfly diagram
of the distribution of sunspots in time-latitude. Then
many dynamo solutions were worked out by Roberts®™,
Kshler’®, Yoshimura®’, Stix’® and others. One might have
felt complacent about the varieties of butterfly diagrams
produced by these authors, However, it has to be admitted
that many basic physics questions remained unanswered.
Since nothing was known at that time about the conditions
in the interior of the Sun, different authors were choosing
different o and £2 subject only to the condition (15),
and thereby were trying to fit the observational data
better. Eventually it appeared that it was becoming a
game in which you could get solutions according to your
wishes by tuning your free parameters suitably. Further
progress in solar dynamo theory became possible only by
asking fundamental questions about the basic physics in
the interior of the Sun, rather than by blindly solving the
dynamo equation. These efforts will be described in the
next section. It may be noted that all the authors of this
pertod focussed their attention on explaining the equa-
torward propagation of sunspots, by assuming that sun-
spots were produced in the regions where the toroidal
component had the peak value. No serious attempt was
made to connect the behaviour of the weak, diffuse mag-
netic field with the dynamo process or to explain the
poleward migration of this field, although Kohler’® and
Yoshimura® presented some models that show a polar
branch, i.e. a region near the poles where the dynamo
wave propagates poleward.

S. Dynamo in the overshoot layer?

Where does the solar dynamo work? Since one needs
convective turbulence to drive the dynamo, it used to be
tacitly assumed in the early 1970s that the dynamo works
in the solar convection zone and the different researchers
of that period used to take o(r, &) non-zero in certain

CURRENT SCIENCE, VOL. 77, NO. 11, 10 DECEMBER 1999
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regions of the convection zone. This approach had to be
questioned when Parker” started looking at the effect
of magnefic buoyancy on the solar dynamo. Magnetic
buoyancy 1s particularly destabilizing in the interior of the
convection zone, where convective instability and mag-
netic buoyancy reinforce each other. On the other hand,
if a region is stable against convection, then magnetic
buoyancy can be partially suppressed there (see, for
example, § 8.8 of Parker’). Calculations of buoyant
rise by Parker”” showed that any magnetic field in the
convection zone would be removed from there by

magnetic buoyancy fairly quickly. Hence it 1s difficult to

make the dynamo work in the convection zone, since the
magnetic field has to be stored in the dynamo region for a
sufficient time to allow for dynamo amplification.

[t 1s expected that there i1s a thin overshoot layer
(probably with a thickness of the order of 10*km) just
below the bottom of the convection zone. This is a layer
which 1s convectively stable according to a local stability
analysts, but convective motions are induced there due
to convective plumes from the overlying unstable layers
overshooting and penetrating there.
(Spiegel and Weiss*’, van Ballegooijen“) pointed out that
this layer is a suitable location for the operation of
the dynamo. Although there would be enough turbulent
motions in this layer to drive the dynamo, magnetic
buoyancy would be suppressed by the stable temperature
gradient there. This idea turned out to be a really pro-
phetic theoretical guess, since helioseismology obser-
vations a few years later indeed discovered a region
of strong differential rotation at the bottom of the solar
convection zone. See the review by Christensen-Dalsgaard
and Thompson in this issue on this subject. So it is
certainly expected that a strong toroidal magnetic field
should be gencrated just below the Dbottom of the
convection zone due to this strong differential rotation. It
may be noted that there have been other i1deas as well tor
suppressing magnetic buoyancy at the bottom of the
convection zone. Parker*” suggested ‘thermal shadows’,
whereas van Ballegooijen and Choudhuri®’ showed that
an equatorward meridional circulation at the basc of
the convection zone can help 1n suppressing magnetic
buoyancy there.

For about a decade starting from the mid-1980s, most
researchers in this field believed that the whole dynamo
process in the Sun, as summarized in Figure 7, takes place
in the overshoot layer. Properties of such a dynamo ope-
rating in the overshoot layer were studied by DeLuca and
Gilman*, Gilman er al.*®, and Choudhuri®®, If the dynamo
operates in the overshoot layer, some necw questions arise.
Previously when the solar dynamo was supposed to work
in the convection zone, the sunspots scen on the solar
surface could be regarded as direct signatures of the
dynamo process. One could assume that sunspots appeared
wherever the dynamo produced strong torotdal ficlds just
underneath the surface. On the other hand, 1f the dynamo
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works at the bottom of the convection zone, the whole
depth of the convection zone separates the region where
the magnetic fields are generated and the solar surface
where sunspots are seen. In order to understand the
relation between the solar dynamo and sunspots, one then
has to study how the magnetic ficlds generated at the
bottom of the convection zone rise through the convection
zone to produce sunspots.

- The best way to study this is to treat it as an initial-
value problem. First an initial configuration with some
magnetic flux at the bottom of the convection zone is
specified, and then its subsequent evolution is studied
numerically. The evolution depends on the strength of
magnetic buoyancy, which is in turn determined by the
value of the magnetic field. If the dynamo is driven by
turbulence, one would expect an equipartition of energy
between the dynamo-generated magnetic field and the
fluid kinetic energy, i.e.

(16)

This suggests B = 10 G on the basis of standard models
of convection. Because of the strong differential rotation,
we expect the magnetic field at the bottom of the con-
vection zone to be mainly in the toroidal direction. One,
therefore, has to take a toroidal magnetic flux tube going
around the rotation axis as the mitial configuration. The
evolution of such magnetic flux tubes due to magnetic
buoyancy was first studied by Choudhurt and Gilman®*’
and Choudhuri®®. It was found that the Coriolis force due
to the Sun’s rotation plays a much more important role n
this problem than what anybody suspected before. If the
initial magnetic ficld is taken to have a strength around
10% G, the flux tubes move parallel to the rotation axis and
emerge at very high latitudes rather than at lautudes
where sunspots are seen. Only if the initial magnetic ficld
is taken as strong as 10° G, magnetic buoyancy is strong
enough to overpower the Coriolis force and the magnetic
flux tubes can rise radially to emcrge at low latitudes.
D’Silva and Choudhuri®’ extended these calculations to
look at the tilts of emerging bipolar regtons at the surface.
Figure 8 taken from thetr paper shows the observational
tilt vs. latitude plot of bipolar sunspots (t.e. Joy's law)
along with the theoretical plots obtained by assuming
different values of the initial magnetic ficld. Tt s clearly
scen that theory fits obscrvations only if the inatial
magnetic field is about 10° G, Apart from providing the
{irst quantitative explanation of Joy's law nearly three-
quarters of a century after its discovery, these caleulations
put the first stringent limit on the value of the toroidal
magnctic ficld at the bottom of the convection zone.
Several other groups™ ™ soon performed similar calou-
lations and confirmed the result. The evidence 18 now
mounting that the magneuc ficld at the bottom ot the
convection zone is indeed much stronger than the equi-
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partition value given by eq. (16) (see Schiissler’ for a
review of this topic).

If the magnetic ficld is much stronger than the equi-
partition value, it would be impossible for the helical
turbulence (entering the mathematical theory through the
a term defined in eq. (11)) to twist the magnetic field
lines. The dynamo process, as envisaged in Figure 7, is
thercfore, not possible. We need a very different type of
dynamo mode!l. Schmitt™ and Feriz-Mas et al.”® proposed
that the buoyant instability of the strong magnetic field
itself may lead to a magnetic configuration which was
previously thought to be created by helical turbulence.
Parker’’ suggested an ‘interface dynamo’ in which the
helical turbulence acts in a region above the bottom of the
convection zone. This idea has been further explored by
Charbonneau and MacGregor’®. In the next section, we
discuss what we regard as the most promising approach to
butld a model of the solar dynamo that can account for the
very strong toroidal magnetic field at the bottom of the
convection zone.

6. The Babcock-Leighton approach and hybrid
models

We saw in § 4 and § 5 that one of the crucial ingredients
in turbulent dynamo theory is the role of helical
turbulence in generating the poloidal component from the
torowdal component, which is mathematically modelled
through mean field MHD. This approach to the dynamo
problem will be called the Parker—Steenbeck—Krause—
Ridler or the PSKR approach. In this approach, the dynamo
1s supposed to operate within a region where convective
turbulence exists and no attention is paid to phenomena
taking place at the solar surface. Babcock™ and Leighton®
in the 1960s developed a somewhat different approach,

Sin Ifl

Sin {;Hrnl

Figure 8. Plots of sin (1ilt) against sin (latitude) theorctically obtained
or different initial values of magnetic field indicated in kG. The
bservational data indicated by the straight line fits the theoretical
urve for initial magnetic field 100 kG (i.e. 10’ G). Reproduced from
)’ Silva and Choudhuri®’.
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which we call the Babcock-Leighton or the BL approach.
Even in this approach, the toroidal magnetic field is
believed to be produced by the differential rotation of the
Sun. For the production of the poloidal component,
however, a totally different scenario is invoked. The
strong toroidal component leads to bipolar sunspots due
to magnetic buoyancy. We have noted that these bipolar
sunspots have a tilt with respect to latitudinal lines
(i.e. Joy's law). Therefore, when these bipolar sunspots
eventually decay, the magnetic flux spreads around in
such a way that the flux at the higher latitude has more
contribution from the polarity of the sunspot which was at
the higher latitude. In this way, a poloidal component
arises.

Compared to the PSKR approach, the BL. approach was
heuristic and semi-qualitative. The mean field MHD is, no
doubt, based on some assumptions and approximations,
and it is not clear whether these hold in the conditions
prevailing in the Sun's interior. However, for an ideal
system satisfying these assumptions and approximations,
the mean field MHD 1s a rigorous mathematical theory.
No quantitative mathematical theory of comparable sophis-
tication was developed for the BL approach. Nearly all
the self-consistent dynamo calculations in the 1970s and
1980s, therefore, followed the PSKR approach. The BL
approach was developed further by a group in NRL*¢!-%
who were studying the spread of magnetic flux from the
decay of sunspots. There was growing evidence that there
1s a general meridional flow with an amplitude of about a
few ms™ near the Sun’s surface proceeding from the
equator to the pole®. The poloidal magnetic field produ-
ced from the decay of tilted bipolar sunspots is carried
poleward by this meridional circulation. As we have
already pointed out in § 2, the weak diffuse magnetic field
on the solar surface migrates towards the pole, in contrast
to sunspots which migrate equatorward. One presumably
has to identify the weak diffuse field as the poloidal
component of the Sun’s magnetic field, whereas sunspots
form from the much stronger toroidal component. The
main aim of the NRL group was to model the evolution of
the weak diffuse field, assuming that this was entirely
coming from the decay of bipolar sunspots. No attempt
was made to address the full dynamo problem. They even
made the drastically simple assumption that the magnetic
field is a scalar residing on the solar surface and the
appropriate partial differential equation was solved only
on this two-dimensional surface.

Dikpati and Choudhuri®**, and Choudhuri and Dikpati®’
attempted to make a vectorial model of the evolution of
the weak diffuse field and to connect it to the dynamo
problem. Since the meridional flow at the surface is
poleward, there must be an equatorward flow in the lower
regions of the convection zone, rising near the equator, If
the dynamo operated at the base of the convection zone,
then, in accordance with the ideas prevalent a few years
ago, the poloidal component produced by this dynamo

CURRENT SCIENCE, VOL. 77, NO. 11, 10 DECEMBER 1999



[ —

SPECIAL SECTION: SOLAR PHYSICS

would be brought to the surface by the meridional
circulation. This can be an additional source of the weak
diffuse field at the surface, apart from the contributions
coming from the decay of sunspots. Figure 9 from
Choudhuri and Dikpati®’ shows a theoretical time-latitude
distribution of the weak diffuse field on the surface,
obtained by assuming a dynamo wave at the bottom of the
convection zone as given. In other words, to produce this
figure — which should be compared with the observational
Figure 2 —the dynamo problem was not solved self-
consistently. The aim now should be to develop a self-
consistent model of the dynamo, which should be able to
explain the behaviours of both the sunspots (i.e. the
toroidal component) and the weak diffuse field (i.e. the
poloidal component).

With helioseismology establishing the existence of
strong differential rotation at the base of the convection
zone, there 1s little doubt that the toroidal magnetic field
1s produced there and has a magnitude of the order of
10° G, a result pinned down by the simulations of buoyant
flux nise. It will, however, be impossible for helical
turbulence to twist such strong magnetic fields, and it
seems improbable that the generation of the poloidal
field from the toroidal field by helical turbulence — as
envisaged in the PSKR approach — takes place at the base
of the convection zone. For the generation of the poloidal
field, we then invoke the BL 1dea that 1t 1s produced by
the decay of bipolar sunspots on the surface. The meri-
dional circulation can then carry this field poleward, to be
eventually brought to the bottom of the convection zone
where it is stretched by the differential rotation to produce
the strong toroidal field. If a mean field formulation is
made of the process of poloidal field generation near the
surface by invoking an « coefficient concentrated near the
solar surface, this hybrid model of the dynamo will
incorporate the best features of both the PSKR and the BL
approaches. On the one hand, detailed quantitative cal-
culations will be possible, as in the PSKR approach. On
the other hand, the surface phenomena emphasized in the
BL approach, are integrated in the dynamo problem. The

G Oper=s

Latitude (in degrees)
n

Time {(in years)

Figure 9. A theorctical time-latitude distribution of the weak, diffuse
magnetic field on the solar surface, with “half-buttertly diagrams’
obtained from a running dynamo wave assumed given at the base of the

- ) , - ¥ P £,
convection zone. Reproduced from Choudhuri and Dikpan™,
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meridional circulation plays an important role in this
hybrid model so that a suitable form of Vp in eq. (14) is
to be specified. It is hoped that this hybrid model will
account for both the equatorward migration of the strong
toroidal field at the base of the convection zone and the
poleward drift of the poloidal field at the surface.

This hybrid model has one other attractive feature.
Researchers 1n 1970s built kinematic models of the solar
dynamo by arbitrarily specifying o(r, 8) and Q(r, 0).
These were regarded as free parameters to be tuned
suitably so as to give solutions with desired charac-
teristics. In the present hybrid models, these important
ingredients to the dynamo process are directly based on
observations. Helioseismology has given us Q(r, 8), with
its shear concentrated at the base of the conve:tion zone.
The o coefficient also arises out of the observed decay of
bipolar sunspots on the surface. Previously it used to be
even debated whether o is positive or negative. Resear-
chers used to fudge o such that the inequality (15) was
satisfied. The direction of tilt of bipolar sunspots on the
surface, however, clearly indicates that ¢ arising out of
their decay has to be positive in the northern hemisphere:
a point made by Stix’® long ago. Once these key ingredi-
ents are fixed directly by observation, we no longer have
the freedom to fudge them according to our wishes, which
researchers 1n 1970s could do. This leads to one problem.
Helioseismology shows that d€2/dr is positive in lower
latitudes where sunspots are seen. If o 1s also positive In
the northern hemisphere, then clearly nequality (15) is
not satisfied and dynamo waves are expected to propagate
poleward!

The first calculations on the hybrid model were repor-
ted by Choudhuri et al.°®*. Dynamo waves were indeed
found to propagate poleward, if meridional circulation
was switched off. The toroidal field and the poloidal ficld
are respectively produced in laycrs near the base of
the convection zone and near the solar surface. When
meridional circulation 1s switched off, any ficld can reach
from one layer to the other layer by diffusion with a time
scale of L%/, where L is the separation between the layers
(i.e. the thickness of the convection zone). If the
meridional flow has a typical velocity of the order V, 1t
takes time V/L for the meridional circulation to carry
some quantity between the two layers. When the time
scale V/L is shorter than the diffusion time scale LB,
the problem is dominated by mernidional circulation and
Choudhuri et al.®® found that the strong toroidal compo-
nent at the bottom of the convection zone actually propa-
gates cquatorward, overriding the inequality (15). Thus
the incquality (15), which was regarded as sacrosanct tor
four decades since Parker™ obtained it, is found not to
hold in the presence of a meridional circulation having o
time scale shorter than diffusion time, thereby opentng up
the possibility of constructing realistic hybrid models ot
the solar dynamo. Further calculations on hybod models
have been reported in a series of papers®™ ™, 1t should be

AR



SPECIAL SECTION: SOLAR PHYSI(_ES

—

emphasized that all these studies are still of rather
exploratory nature. They demonstrate the viability of the
hybrid models and study their different characteristics.
We are, however, still far from building a sufficiently
realistic model, putting in all the details, that would
account for the observational data presented in Figure 2.
Achieving this should be our goal now.

7. Miscellaneous ill-understood issues

Since this is a review in a special section on solar physics,
we have primarily discussed those aspects of kinematic
dynamo models which directly pertain to the matching of
theory with observational data. It should, however, be
kept in mind that many fundamental issues of dynamo
theory are still very ill-understood. Until we have a better
understanding of these issues, the kinematic models can,
at best, be considered superficial attempts at a very deep
physics problem. The reader may look up the IAU Sym-
posium volume on The Cosmic Dynamo’® for several
articles dealing with these fundamental 1ssues. Here we
make only very brief comments on some of these issues.

We have seen in § 4 that the turbulent dynamo theory is
developed by averaging over turbulent fluctuations. The
existence of magnetic tlux concentrations clearly indicates
that the fluctuations are much larger than the average
values (often by orders of magnitude). Does a mean field
theory make sense in such a situation? Can we trust the
perturbative procedures like the first-order smoothing
approximation? Hoyng”” raised some questions regarding
the interpretation of the averaged quantities. The dynamo
eq. (13) admits of several possible modes in spherical
geometry: the preferred mode seems to be the mode with
dipole symmetry, wherein the toroidal component is
oppositely directed in the two hemispheres. This mode
approximately corresponds to the observational data.
However, Stenflo and Vogel’® pointed out that one
hemisphere of the Sun often has more sunspots than the
other, indicating that there may be a superposition with
higher modes having different symmetry. Analysing the
statistics of sunspot data for several decades, Gokhale and
Javaraiah’’ claimed to have found evidence for multiple
modes. If the fluctuations are so large, there 1s no reason
why a particular mode should be very stable, or why
higher modes should not be excited. The interference of
modes with different symmetry was theoretically studied
by Brandenburg et al.”® employing a nonlinear dynamo
model.

Since the toroidal magnetic field is far stronger than the
equipartition value, it 1s certainly not justificd to assume
that the magnetic ficlds do not back-react on the flow.
One should therefore ideally solve egs (1) and (2) simul-
taneously, instead of proceeding with kinematic models.
Since this is a fairly difficult job even by the standard of
today’s computers, attempts are made to include the back-
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reaction of the magnetic field within kinematic models
instead of going to fully dynamic models. One easy way
to incorporate the back-reaction 1n the dynamo eq. (13) is
to make the crucial quantity & decrease with the magnetic
field, following some prescription like:

o = —= 5 (17)
1+ (B/By)

The effect of such a-quenching on the dynamo process
has been extensively studied”” . When the velocity field
v is specified, the dynamo eq. (13) is a linear equation
for the magnetic field B provided we assume the various
coefficients in the equation to be independent of B. If «
is quenched by B, in accordance with eq. (17), we have a
nonlinear problem. One important question 1s whether the
irregularities of the solar cycle, as seen in Figure 3, can be
explained with the help of nonlinear models. It seems that
the nonlinearity introduced through eq. (17) cannot cause
such chaotic behaviour. Since a sudden increase in the
amplitude of magnetic ficld would diminish the dynamo
activity by reducing « and thereby pull down the amp-
litude again (a decrease in the amplitude would do the
opposite), the a-quenching mechanism tends to lock the
system In a stable mode once the system relaxes to it. In
fact, Krause and Meinel® argued that nonlinearities must
be what makes one particular mode of the dynamo so
stable. Only by introducing more complicated kinds of
nonlinearity (with suppression of differential rotation) in
some highly truncated dynamo models, Weiss et al.®®
were able to find the evidence of chaos. Jennings and
Weiss® presented a study of symmetry-breakings and bifur-
cations 1n a nonlinear dynamo model. Since o-quenching of
the form (17) cannot explain the irregularities of the solar
cycle, Choudhuri®® explored the effect of stochastic
fluctuations on the mean equations and obtained some
solutions resembling Figure 3. Several subsequent pa-
pers®’ ™ explored this possibility further,

Finally we comment on the efforts in building fully
dynamic models by solving both eqs (1) and (2) simul-
taneously. This is a highly complicated nonlinear problem
and can only be tackled numerically. Gilman™ and Glatz-
maier’ presented very ambitious numerical calculations
in which convection, differential rotation and dynamo
process were all calculated together from the basic MHD
equations. These calculations, however, gave results which
do not agree with observational data. For example, angu-
lar velocity was found to be constant on cylinders,
whereas helioseismology found it to be constant on cones.
If various diffusivitics were set such that the surface
rotation pattern was matched, the dynamo waves propa-
gated from the equator to the pole. The codes of Gilman™
and Glatzmaier’' naturally had finite grids, and the
physics at the sub-grid scales was modelled by intro-
ducing various eddy diffusivities. Probably the physics at
sub-grid scales is more subtle and the details of it are
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crucially important in determining the behaviour of
the dynamo. This is generally believed to be the reason

The solar dynamo problem will certainly remain alive for
years to come.

why these massive codes did not produce agreement
with observations. The subsequent approach in nume-
rical modelling has been to do dynamic calculations over
cubes which correspond to small regions of the Sun,
rather than trying to build models for the whole Sun.
Brandenburg et al.”” and Nordlund et al.** have followed

this approach.

8. Conclusion

It seems that the solar magnetic fields are generated and
maintained by the dynamo process. There is only a small
minority of solar physicists who would disagree with
this point of view. It is, however, not easy to build a
sufficiently detailed and realistic model of the dynamo
process to account for all the different aspects of solar
magnetism. The 1970s happened to be a period of opti-
mism in dynamo research when various researchers were

puters still seem inadequate for handling this problem.
2, VOL. 77, NO. 11, 10 DECEMBER 1999
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