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On the future of Riemann Hypothesis*

K. Ramachandra

Nattonal Institute of Advanced Studies, 11S8¢ Campus,
Bangalore 560 012, India

Riemann Hypothesis, Lindel6f Hypothesis, Density
Hypothesis and their relations to distribution of prime
numbers are discussed. Some achievements of G.
Halasz and P. Turan are also mentioned.

IN popular language, Riemann Hypothesis (RH) is the
same as the convergence (for every 0 >1) of

M(s)=iu(n)n“"‘f,(.§=a+ir), (1)
n=I

where (1) = 1, p(n) = 0 if n(> 1) is divisible by the square
of a prime and otherwise u(n)==+1 according as n
has even or odd number of prime factors. The absolute
convergence of the series eq. (1) in o> 1 is a trivial fact.
But it 1s already a non-trivial fact that eq. (1) converges
on 6= 1. To prove that it converges for some s with o < 1
(1t 1s called quasi RH, i.e. qRH) is so hopeless that one
may describe it as a problem which may take many
centuries to be solved. However, it is not difficult to
prove that 1t does not converge for any s with 0'.‘_:]5 and
this assertion comes out from the fact that there
exists some -pole say at s= 8+ iy with f22 for the
meromorphic continuation of M(s) (of course to prove the
existence of such a pole we need the functional equation
called FE which we describe later in the article) to the
whole plane, which is not difficult to establish. RH (or
qRH) 1s thus equivalent to the convergence for real values
of s (1.e. t =0) for the relevant values of 5. Thus RH
(resp. qRH) is equivalent to

N
D u(n)y=O(N%*#), for every fixed £ > 0, (2)
n=l

for a:—%- (resp. some a< 1). Actually the meromorphic
continuation of M(s) to the whole plane is easy to
establish since in ¢>1 we have easily M(s) = ({(s))™
where

()= n™" =11,(1-p~*)",
n=|

the product being over all primes. Now in ¢ > 0 we have

o [ . n+ldu] ]

((s)= 2 n_t - —

n=l\ U
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and repetition of this process arbitrary number of times
shows that ¢(s) ~—L is an entire function. To prove that
§(s)#0 for o> a it suffices by an important famous
theorem of Landau (on singularities of Dirichlet series
(resp. integrals) with positive coefficients (resp. positive
Integrands)) to prove that (for some positive integer Ng)
there holds,

N
2#(”-)2"Na! (3)
n=l|

for all N2 N, But the precise implications of eq. (3)
when a=a(N)<1 (say when oN)=1-(log N) ",
0 <1<%) are not known even today. If eq. (3) can be
proved for some n<%— we can expect a non-trivial
improvement of the Vinogradov zero-free region

22 _1 |
(0 21-A(logT) 3(loglogT) 3,1t1< T, T2T,),

where A > 0 1s a certain absolute constant.
The precise implications of

I
N
D um)| SN (validforall N 2 N,) (4)
n=1\ |

were investigated by Ramachandra et al." when a = a(V)
1s close to 1. Some important investigations of eq. (3)
when o 1s fixed and independent of N were carried out
earlier by Balasubramanian and Ramachandra®.

As has been remarked already it is not hard to continue

C(s) --;'_":f as an entire function. Also it is a simple matter
to prove

0=0(-2)=C(-4)={(-6)=.... (%)

But to prove that these are the only zeros of {(s) in < 0
we need the functional equation, namely

1 F(-%]((S) =&(s)=¢(1-s). (FE)

Again, it 1s a simple matter (no FE is necessary) to prove
that for all 72 T(¢, &) there exist 2 T '~ eros of {(s) in
02-'5- ~ 8, T<t<2T (see Ramachandra™). But to deduce
from this that there are zeros in 0'2-'5- we need the FE.
Hardy (see Titchmarsh®) showed that there are infinitely
many zeros on 0 =L, using the FE (Riemann had proved
earlier that there exist some zeros on g=1 using the FE
(see ref. 5)). In fact Hardy and Littlewood showed (using
FE) that there exists a zero p= —21-+ (y with TSys T+
T for all T2 Ty(€). The constant + was reduced to
-é— by Balasubramanian®, The latest, however, is v;-j- due to
Karatsuba (see ref. 7).

Let O denote the least upper bound of the real parts
of the zeros of {(x). Then 1t 1s not hard to prove that (see

ref, 3)
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L<g <1, (6)

RH asserts that 6=-§_'- But the most pessimistic side of &
15 that we are unable to decide whether the constant
g satisfies 8< 1 or 0>+. Vinogradov's zero-free region
mentioned earlier is the deepest and the most precious
result in the whole of the theory of {(s5). Vinogradov
deduced his zero-free region from his deep result which is
as follows: For all 5(055‘5}—[')5) and all t2 10 there
holds

1E(1=8 +in1<(® og A, (b=67), (7)

for some absolute constant A > 0 (The precise value of A
1s unimportant). Actually his method gives the upper
bound Bt*"(log1)*, where B >0 is an absolute constant
(see ref. 5). In 1920s Vinogradov proved that the quantity
C(+ir)(loge) ? is bounded for ¢ 2 2. Even today (after
the lapse of nearly 80 years) there is no progress of the

type
{(1+it)(log t)-% — 0. , (3)

This looks highly challenging (because qRH trivially
implies that I£(1 + ir)l (log log £)™' is bounded above for
r 2 100). Actually if in eq. (7) we can prove that % can be
replaced by a slightly higher value we cannot only prove
eq. (8) but we can also widen the zero-free region of
Vinogradov. All these look highly unlikely to be achieved
even 1n the next few decades and perhaps even in the next
century. | -

Letp,=0,+iy, (0<y; £v, <¥3 <) be all the zeros
of {(s) with 3, > % Littlewood showed (see ref. 5) that

%‘HI —Vn = O((Iﬂg 10g log yn)_l):

tor all n such that y= 10000. This was supplemented by
the following result of Ramachandra and Sankara-
narayanan®. Suppose ({(s)#0ino ?_%+ s Tonyr Where
t21 and ¢ >0 is a certain absolute constant. Then for

Y, 2 10000 we have

Yt —¥a =O((loglogy,)7").

(Actually the two authors proved a slightly more general
result of which this is a corollary.) One of the problems is
to improve upon this bound for the gaps, assuming RH.
Another problem is to prove that all the zeros of {(s) are
simple.

I should make it clear that this is not a survey article.
(We do not by any means give a complete list of
references.) The main emphasis is on exposition of open
problems. The interested readers are referred to
Titchmarsh® or Ivic’.

From RH it has been deduced that (due to J. E.
Littlewood)

952

{(+it)™ -0, (9)

for every fixed €> 0, as t — o (This is called Lindelsf
Hypothesis). The best unconditional € is any £ with € > 1L,
due to Huxley and Kolesnik’.

Density Hypothesis (DH): Tt is eq. (10) (stated below)
yet to be proved without assuming LH. Let N(o, T) be the
number of zeros [+ iy of {(s) with 8>2c(20) and
lyl £ T. Then Ingham proved for the first time that eq. (9)
implies (see ref. 5) that for every fixed € > O there holds

N(o,T) <T@ (160 TYE (T 210), (10)
where C; = Cy(g) > 0 is a constant, It may be mentioned

that an interesting consequence of eq. (10) is that if p,
denotes the nth prime, thentoralln=1, 2, 3, ... we have

1ie

Pott —Pn <Cypi (11)

where £€> 0 is any fixed real number and C, = C,(€) > 0
depends only on & The result p, 4 ~p.< Gy pleog o
(where C; > 0 1s an absolute constant) is a consequence
of RH. However, it should be mentioned that p,,; — p,
< C, pfz 1s beyond the reach of RH at present. Also it
should be mentioned that the best known unconditional &
in eq. (11) 1s 2—35 according to a recent result of R. C.
Baker and G. Harman.

Halasz—Turdn theorem: LH implies that for every
£> 0 and every 0 > 0 we have

NEZ+8,T)y< CTE, (T 210), (12)

where C; = C5(€) > 0 depends only on € and é.

Haldsz and Turdn thought (and even announced) that
LH implies eq. (12) with 3 in place of 3. But they did
not settle the problem and this is so far a difficult open
problem.

I would state two problems which I call Turdn’s

dreams.

(1) Prove Haldsz—Turdn theorem with %replaced by '5,
and (2) prove (unconditionally) that there exists an absolute
constant A; > O for which there holds

N(=8,T)<(T% log T)™, (13)

where T2 10 and 0 < 351‘5.
Actually Haldsz and Turdn proved (unconditionally)
using Vinogradov’s deep result eq. (7) that

N(1-8,T)< (T log T)*, (14)

where 0<5<~1-{-’)-5, T210 and A,>0 is an absolute
constant,

Inspired by Haldsz~-Turdn theorem there is a lot of
unconditional progress on DH (and other problems
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mentioned here) notably by Montgomery who is the
leader of this progress. Other contributors are Huxley,
Jutila and Ramachandra and others (For all these results
see Titchmarsh’ or Ivic’).

Prove or disprove (unconditionally) that

1 p27 { .o .6
—T-j‘_r 1 C(5+ir)l dr<T", (15)

for every €> 0 and all 7= Ty(¢).

Note that eq. (15) 1s a consequence of LH which is a
consequence of RH. Trivially, given the truth of eq. (15)
with some (positive) exponent in place of 6, we can
deduce its truth for all lower (positive real) exponents. So
we look for the highest real power in place of 6 known
today. This value 1s 4, due to Hardy and Littlewood (I do
not know any proof of their result which avoids FE). The
proof eq. (15) with 2 in place of 6 is easy and does not
need FE. The following deep result due to Heath-Brown is

certainly worthy of mention here (see ref. 5 or ref. 7).
There holds

1 e2r L2 [
F'[T |C(‘}Z+”)] dr<TF, (16)

for every £€> 0 and all T = Ty(¢€).
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Role of Bar locus in development
of legs and antenna in

Drosophila melanogaster
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The X-linked Bar (B) mutation of Drosophila melano-
gaster, responsible for the well-known Bar eye
phenotype due to over-expression of the BarHl1
homeo-domain protein, is shown to enhance the
abnormalities in legs and antennae of flies carrying a
viable combination of certain decapentaplegic (dpp)
loss of function mutant alleles. It is also shown that the
homeo-domain carrying BarH1/BarH2 protein pro-
ducts of the B locus are expressed in a characteristic
annular pattern in areas of normal larval leg and
antennal discs that correspond to the distal regions of
adult fly appendages. dpp-mutant background partly
disrupts the expression pattern of Bar homeo-proteins
in these discs and a combination of B and dpp-mutant
alleles disrupts the Bar expression patterns in these
imaginal discs much more severely. This is in agree-
ment with the more severe phenotypes of legs and
antennae of such flies. We suggest that the homeo-box
containing B genes function as new members of the
proximal distal sector genes and are important for
patterning these appendages along their proximo-
distal axes.

THE Bar eye mutant phenotype of Drosophila melano-
gaster 18 associated with a tandem duplication (Bar
duplication) of the 16A1-7 region of the X chromosome’,
and 1s characterized by a drastically reduced number of
ommatidia in the compound eyes of adult flies®.
Organization of the B locus is complex since it harbours
at least two homeo-box containing genes, the BarH]
and BarH2, ot which BarHI is reported to be over-
expressed due to the Bar duplication™. The decapenta-
plegic, dpp, gene product is a member of the TGFp
family’ and has very important roles in morphogenesis in
many developmental pathways in Drosophila. The gene
dpp is expressed in the eye discs of third-instar larvae of
Drosophtla in the anteriorly moving morphogenetic
furrow and this is responsible for induction of difte-
rentiation of the precursor cells into ommatidia®, Qver-
expression of BarHl homeoprotein in eye discs of B
mutant larvae 1s associated with attenuation of dpp gene
expression in the morphogenctic furrow’. As a result,
ommatidial precursor cells tail to  ditferentiate  and
instead, undergo  apoptotic  death. Consequently, the
number of ommatidia in adult eyes of & mutant flies 1s
substantially reduced’. Al other adult structures are
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