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More about the Raman modes

K. S. Viswanathan

Al Astalakshmi, 61 Second Main Road, Gandhinagar, Adyar,
Chennai 600 020, India

It is shown that the soft mode among the (24p-3) op-
tical modes propounded by Raman has the character-
1stics of high phonon magnification factor and is also
a caustic at phase transition.

THE heat pulse experiments'® have demonstrated that
phonons are focused in certain directions and defocused
in certain other directions, even when one starts with an
incoherent source of phonons with isotropic angular
distribution of wave vectors. The phonon magnification
factor (PMF) A has been defined by Taylor et al.?, as
the ratio of the solid angle in the wave vector space to
the solid angle in the group velocity space:
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where (0,, ¢,) denote the polar angles of the group ve-
locity vector and (0, ¢) those of the wave vector. Earlier
Jacob Philip and Viswanathan® had evolved a computer-
based numerical method to evaluate the phonon focusing
for crystals. The PMF has been studied earlier by
Viswanathan and his students*™® for acoustic waves for a
large number of crystals. The phonon focusing effect is
best demonstrated experimentally by the ballistic
phonon imaging technique devised by Northrop and
Wolfe”?,

While these studies have focused on acoustic modes,
very little work has been carried out for phonon focusing
for optical modes. Northrop and Wolfe”® have also stud-
1ed the phonon focusing for optical modes. We define the
magnification tactor A,, for the optical modes as

1 dsdsds,  s*sin 6,dsdB.do,
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Since  this  quantity  involves the  Jacobian
J = (d(s,, sy, 5,)/9(q,, g,, q,)) of the transformation {rom
the group velocity space to the wave vector space, it 18
clear that the phonon magnification factor is inversely
proportanal to the Jacobian of the transformation be-
tween the two sets of variables.

This note investigates how the phonon magnification
factor A,, for optical modcs behaves near a phase trans-
formation. Jt was shown earlier by Viswanathan” that the
group velocity of the waves vanishes for (24p-3) optical
modes. According to Raman'®'', for these modes,
equivalent atoms 1n adjacent cell vibrate cither with the
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same phase or with opposite phase. Since the group ve-
locity is inversely proportional to the frequency distri-
bution f(v) of phonons, these modes further have
singularities in the frequency spectrum. Representing
the wave vector q in the reciprocal space
q :lel +91b2+93b3 where b,, bg, b3 are the basic
vectors of the reciprocal space, these modes correspond
for the set (6, 0,, 6;) to the values (0, 0, 0); (i, 0, 0);
(0,7, 0); (0,0,m); (0,m, x); (x,0,n): (7, , ) and
(, 7, 7).

These modes are well known as zone centre or zone
boundary modes in the literature. Their importance in
solid state physics stems from the fact that all phase
transitions, ferroelectric or antiferroelectric, correspond
to soft modes associated with any one of these wave
veCiors.

As stated earlier, the group velocity (dw/dg) for these
optical modes vanishes. If in addition, the second de-
rivatives (8°w/dq,dq,) vanish all or more especially the
determinant of these quantities vanishes, the zone cen-
tre-boundary modes will further have the characteristics
of a caustic. Here, we find under what conditions, these
modes will turn into a caustic for phonon propagation.

This dispersion equation for a crystal with p atoms in

the unit cell is given by'*!*:

31 3p~r

3
X i + Slx + e + er + »ue + S}p.._}x + S'}P — 0,

(3)

where we write x = 0~

We try to evaluate the second derivative of w with re-
spect to g at the zone centre or any one of the zone
boundary points. Differentiating the above equation
twice with respect to g and noting that at these points
(dw/dg) = 0, we get

pi
2w -g-;-“;- = ~(X/Y), (4)
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where X = x3/} -4-%1-+...+_r-—-"’—3-g-'-‘-:‘— e/ (5)
dg dq dg-

and Y = 3_111:3’"1 +53p~HeP24 +253,.9X+83,-1.(6)

We shall now suppose that the mode @ = @) is the soft
mode and 1t tends to zero in the imit 77— T, where T,
(s the critical temperature for the phase transition. In the
limit xy — 0, we ohtain

, (7)
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Now $y, 18 the product of all the roots of the ecquation
with a sign factor and may be written as
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$3p = (=)Mo} = i F, (8)
where F=(—l)3pm§w§...w§p. (%)

From this we find that
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Since (dw/dg) = 0, at these critical points, we have

dl 2 2
S‘;F = 2w, d ml-F+m%---—~---—d F.
dg
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Again s3,.; 1s the sum of products of all the roots of eq.
(3) taken (3p-1) at a time with a sign factor of (—1)"".

We group it into terms involving w,* and another term
not involving it. We write

2 ip-1,.2 2 2
S1p-1 =ik + (D" 0ws...w3,]

=wiF - F. (12)

In the limit when w; — 0, we have 53, | - ~F.

And further in the limit when (dw/dg) = 0, one can
find that

d?F
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Hence from eq. (7) we find that

2
20, 2L = —(A/B),
dg

(14)
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where A = —[2&)1
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and B=(-F+w?F), (16)
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In the same way we can show that

3w,
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It follows that all the second derivatives of w; with re-
spect to g, ¢,, g, tend to zero as w, or IT-T.I'"*. This
result is stronger than saying that the determinant of the
second derivatives vanishes. It 1s clear that the phonon
magnification factor becomes infinite or in practical
cases large due to scattering, as the transition tempera-
ture may still be different from the temperatures of the
ballistic regime.

It was shown by the Viswanathan’ that any initial
disturbance in the crystal after a long time asymptoti-
cally settles into a superposition of the (24p-3) normal
modes with an amplitude proportional to %, The effect
of an initial disturbance is evaluated as an integral near
the saddle point for which (dw/dgq ) =0 (x=1x, y, 2).
When the second derivatives (azwlaqxaq},) vanish for a
particular frequency, this treatment needs modification.
In this case the third order terms in the expansion of @
near the zone boundary or zone centre vectors make
contributions to the integral which varies far more
slowly than what the % law might suggest. (For ex-
ample, an integral in one variable that would normally
yield r'"* will now vary as r'”.) The amplitude will be
much higher than /¢ or in other words, these modes in
addition to being singularities in the frequency spectrum
are also caustics. When a phase transition takes place,
the mode that becomes soft has high magnification fac-

tor bestdes being a caustic.

o — — .

I. Taylor, T., Maris, H. J. and Elbaum, C., Phys. Rev. Lett., 1969,
23, 416. |

2. Taylor, R., Maris, H. J. and Elbaum, C., Phys. Rev., 1971, 3,
1462.

3. Philip Jacob and Viswanathan, K. S., Phys. Rev., 1978, B17,
4969, -

4. Viswanathan, K. S. and Pushpahasan, A., Pramana, 1985, 24,
875.

5. Viswanathan, K. S., in Proceedings of XIII Winter School of
Theoretical Physics held at Karpaacz, 1987, Springer-Verlag,
Poland, p. 301.

6. Viswanathan, K. §. and Narasimha lyer, V., J. Phys., 1987,
C20, 5261.

7. Northrop, A. and Wolle, 1. P, Phys. Rev., 1980, B22, 6196.

8. Northrop, A. and Wolfe, J. P., Phys. Rev. Lett., 1979, 43, 1424.

9. Viswanathan, K. S., Proc. Indian Acud. Sci., 1953, 37, 424.

10. Raman, C. V., Proc. Indian Acud. Sci., 1943, 18, 237.

11. Raman C. V., Proc. Indian Acuad. Sci., 1947, 26, 339,

12. Born, M. and Huang, K., Dynamical Theory of Crystal Lattices,
Oxford, 1954.

13. Maradudin, A. A. et al., Theory of Lattice Dynamics in the
Harmonic Approximation, Academic Press, New York.

Received 20 May 1999; accepted 18 July 1999

804

CURRENT SCIENCE, VOL. 77, NQ. 6, 25 SEPTEMBER 1999

S e e



