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The field of neural network modelling has grown up
on the premise that the massively parallel distributed
processing and connectionist structure observed in the
brain is the Key behind its superior performance. The
conventional network paradigm has mostly centered
around a static approach —~the dynamics involves
gradient descent of the network state to stable fixed-
points (or, static attractors) corresponding to some
desired output. Neurobiological evidence however
points to the dominance of non-equilibrium activity in
the brain, which is a highly connected, nonlinear
dynamical system. This has led to a growing interest in
constructing nonequilibrium models of brain activity —
several of which show extremely interesting dynamical
transitions. In this paper, we focus on models
comprising elements which have exclusively excitatory
or inhibitory synapses. These networks are capable of
a wide range of dynamical behaviour, including high
period oscillations and chaos. Both the intrinsic
dynamics of such models and their possible role in
information processing are examined.

L

SINCE the development of the electronic computer in the
1940s, the serial processing computational paradigm has
successfully held sway. It has developed to the point
where it 1s now ubiquitous. However, there are many tasks
which are yet to be successfully tackled computationally.
A case in point is the multifarious activities that the
human brain performs regularly, including pattern recog-
nition, associative recall, etc. which are extremely
difficult, if not impossible to do using traditional
computation.

This problem has led to the development of non-
standard techniques to tackle situations at which
biological information processing systems excel. One of
the more successful of such developments aims at
‘reverse-engineering’ the biological apparatus itself to
find out why and how it works. The field of neural
network models has grown up on the premise that the
‘massively parallel distributed processing and connec-
tionist structure observed in the brain is the key behind its
superior performance. By implementing these features in
the design of a new class of architectures and algorithms,
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it 1s hoped that machines will approach human-like a
in handling real-world situations.

" The complexity of the brain lies partly in
multiplicity of structural levels of organization ir
nervous system. The spatial scale of such structures
about ten orders of magnitude — starting from the ley
molecules and synapses, going all the way up to the ¢
central nervous system (Figure 1).

The unique capabilities of the brain to per
cognitive tasks are an outcome of the collective g
behaviour of its constituent neurons. This is the -
vation for investigating the network dynamics of n
neurons. Depending upon one’s purpose, such ‘neu
may be either, extremely simple binary thres
activated elements, or, described by a set of col
partial differential equations incorporating det
knowledge of cellular physiology and action pote
propagation. However, both simplifying and rea
neural models are based on the theory of nonl
dynamical systems in high-dimensional spaces'.
development of nonlinear dynamical systems theory
particular, the discovery of ‘deterministic chaos
extremely simple systems — has furnished the theore
tools necessary for analysing non-equilibrium net
dynamics. Neurobiological studies indicating the pre:
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of chaotic dynamics in the brain and the investigation of
its possible role 1n biological information processing has
provided further motivation.

Actual networks of neuronal cells in the brain are
extremely complex (Figure 2). In fact, even single
neurons (Figure 3) are much more complicated than the
‘formal neurons’ usually used in modelling studies, and
are capable of performing a large amount of compu-
tation”. To gain insight into the network properties of the
nervous system, researchers have focused on artificial
neural networks. These usually comprise of binary
neurons (i.e. neurons capable of being only 1n one of two
states), S;(==+1; i=1, 2, ..., N), whose temporal
evolution is determined by the equation:

Si=F (%W, 5;— 6), (1)

where 6; is an internal threshold, W; is the connection
weight from element j to element i, and F is a nonlinear
function, most commonly taken as a sign or tanh (for
continuous value S;) function. Different neural network

models are specified by

e network topology, i.e. the pattern of connections
between the elements comprising the network;

e characteristics of the processing element, e.g. the
explicit form of the nonlinear function F, and the value
of the threshold 6;

e learning rule, i.e. the rules for computing the connec-

tion weights W; appropriate for a given task, and,
e updating rule, e.g. the states of the processing elements

Figure 2. Ncuronal nctwork of purkinye cells in the cerebellum of o
hedgehog (inage obtained through golgi staining of neurons). (From
http:// weber.u.washington.edu/ chudler/).
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may be updated in parallel (synchronous updating),
sequentially or randomly.

One of the limitations of most network models at
present is that they are basically static, 1.e. once an
equilibrium state 1s reached, the network remains in that
state, until the arrival of new external input’. In contrast,
real neural networks show a preponderance of dynamical
behaviour. Once we recall a memory, our minds are not
permanently stuck to it, but can also roll over and recall
other associated memories without being prompted by any
additional external stimuli. This ability to ‘jump’ from
one memory to another in the absence of appropriate
stimuli is one of the hallmarks of the brain. It i1s an ability
which one should try to recreate in a network model 1f 1t
1S ever to come close to human-like performance 1n
intellectual tasks. One of the possible ways of simulating
such behaviour is through models guided by non-
equilibrium dynamics, in particular, chaos. This 1s
because of the much richer dynamical possibilities of such
networks, compared to those in systems governed by

convergent dynamicss.

The focus in this work will be on ‘simple’ network
models: ‘simple’ not only in terms of the size of the
networks considered when compared to the brain
(consisting of ~ 10'' neurons and ~ 10"’ synapses), but
‘simple’ also in terms of the properties of the constituent
elements (i.e. the ‘neurons’) themselves, in that, most of
the physiological details of real neurons are ignored. The
objective is to see and retain what is essential for a
particular function performed by the network, treating
other details as being of secondary importance for the task
at hand. To do that one has to discard as much of the
complexity as possible to make the model tractable -
while at the same time retaining those features of the
system which make it interesting. So, while this kind of
modelling is indeed inspired by neuroscience, it 1S not
exclusively concerned with actually mimicking the

activity of real neuronal systems.

The Hopfield model

The foundation for computational neural modelling can be
traced to the work of McCulloch and Pitts in 1943 on the

Figore 3. Schematic diagram of a neuron (fromy  hup:www.
vtexas.edufresearch/asrec/neuron. html).
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universal computing capabilities of logic circuits akin to
neural nets. However, the interest of physicists was drawn
much later, mostly due to the work of Hopfield® who
showed the eguivalence between the problem of
associative memory — where, one of many stored patterns
has to be retrieved which most closely matches a
presented input pattern —and the problem of energy
minimization in spin glass systems. In the proposed
model, the 2-state neurons, S; (i=1,..., N), resemble
Ising spin variables and interact among each other with
symmetric coupling strengths, W,;. If the total weighted
input to a neuron i1s above a specified threshold, it is said
to be ‘active’, otherwise it is ‘quiescent’. The static
properties of the model have been well understood from
statistical physics. In particular, the memory loading
capacity (i.e. the ratio of the number of patterns, p, stored
in the network, to the total number of neurons), o = p/N,
is found to have a critical value at o = 0.138, where the
overlap between the asymptotic state of the network and
the stored patterns show a discontinuous transition. In
other words, the system goes from having good recall
performance (<o) to becoming totally
(x> o).

It was observed later that dynamically defined networks
with asymmetric interactions, W, have much better recall
performance. In this case, no eftective energy function
can be defined and the use of statistical physics of spin
glass-like systems is not possible. Such networks have,
therefore, mostly been studied through extensive
numerical simulations. One such model is a Hopfield-like

network with a single-step delay dynamics with some
tunable weight A:

useless

Sin + 1) = sign [ZW(S,(n) + AS;(n — 1))]. (2)

Here, Si(n) refers to the state of the i-th spin at the n-th
time interval. For A > 0, the performance of the model
improved enormously over the Hopfield network, both in
terms of recall and overlap properties’. The time-delayed
term seems to be aiding the system in coming out of
spurtous minimas of the energy landscape of the
corresponding Hoptield model. It also seems to have a
role In suppressing noise. For A <0, the system shows
limit cycle behaviour. These limit-cycle attractors have
been used to store and associatively recall patterns®. If the
network 1s started off in a state close to one of the stored
memories, it goes 1nto a limit cycle in which the overlap
ot the instantaneous configuration of the network with the
particular stored pattern shows large amplitude osci-
llations with time, while overlap with other memories
remains small. The model appears to have a larger storage
capacity than the Hopfield model and better recall
performance. It also performs well as a pattern classifier if

the memory loading level and the degree of corruption
present in the input are high.
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The travelling salesman problem

To see how collective computation ¢an be more effective
than conventional approaches, we can look at an example
trom the area of combinatorial optimization: the Travelling
Salesman Problem (TS5P). Stated stmply, TSP involves
finding the shortest tour through N cities starting from an
initial city, visiting each city once, and returning at the end
to the initial city. The non-triviality of the problem lies in
the fact that the number of possible solutions of the problem
grows as (N~ 1)1/2 with N, the number of cities. For
N = 10, the number of possible paths is 181,440 — thus,
making it impossible to tind out the optimal path through
exhaustive search (brute-force method) even for a modest
value of N. A ‘cost function’ (or, analogously, an energy
function) can be defined for each of the possible paths. This
function is a measure of the optimality of a path, being
lowest for the shortest path. Any attempt to search for the
global solution through the method of ‘steepest descent’
(1.e. along a trajectory in the space of all possible paths that
minimizes the cost function by the largest amount) is bound
to get stuck at some local minima long before reaching the
clobal minima. The TSP has also been formulated and
studied on a randomly dilute lattice’. If all the lattice sites
are occupied, the desired optimal path is easy to find; it is
just a Hamilton walk through the vertices. If however, the
concentration p of the occupied lattice sites (‘cities’) is less
than unity, the search for a Hamilton walk through only the
randomly occupied sites becomes quite nontrivial. In the
limit p — 0, the lattice problem reduces to the original TSP
(in continuum).

A neural network approach to solving the TSP was first
suggested by Hoptield and Tank'’. A more effective
solution 1s through the use of Boltzmann machines”,
which are recurrent neural networks implementing the
technique of ‘simulated annealing’'?. Just as in actual
annealing, a material i1s heated and then made to cool
gradually, here, the system dynamics is initially made
no1sy. This means, that the system has initially some
probability of taking up higher energy configurations. So,
if the system state is a local optima, because of
fluctuations, it can escape a sufficiently small energy
barrier and resume its search for the global optima. As the
noise 1s gradually decreased, this probability becomes less
and less, finally becoming zero. If the noise is decreased
at a sufficiently slow rate, convergence to the global
optima 1s guaranteed. This method has been applied to
solve vartous optimization problems with some measure
of success. A typical application of the algorithm to

obtain an optimal TSP route through 100 specific Euro-
pean cities 18 shown in Figure 4 (ref. 13).

Nonequilibrium dynamics and excitatory—
inhibitory networks

The Hopfield network is extremely appealing owing to its
simplicity, which makes it amenable to theoretical ana-
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lysis. However, these very simplifications make it a
neurobiologically implausible model. For these reasons,
several networks have been designed incorporating known
biological facts —such as, the Dale’s principle, which
states that a neuron has either exclusively excitatory or
exclusively inhibitory synapses. In other words, if the i-th
neuron i1s excitatory (inhibitory), then W; > 0 (< 0) for all
J. It 1s observed that, even connecting only an excitatory
and an inhibitory neuron with each other leads to a rich
variety of behaviour, including high period oscillations
and chaos'*'°. The continuous-time dynamics of pairwise
connected excitatory—inhibitory neural populations have
been studied before'’. However, an autonomous two-
dimensional system (i.e. one containing no explicitly
time-dependent term), evolving continuously in time,
cannot exhibit chaotic phenomena, by the Poincare-
Bendixson theorem (see e.g. Strogatzls). Network models
updated in discrete time, but having binary-state
excitatory and inhibitory neurons, also cannot show
chaoticity, although they have been used to model various
neural phenomena, e.g. kindling, where epilepsy is
generated by means of repeated electrical stimulation of
the brain'’. In the present case, the resultant system is
updated in discrete-time intervals and the continuous-state
(as distinct from a binary or discrete-state) neuron dyna-
mics 18 governed by a nonlinear activation function, F.
This makes chaotic behaviour possible in the model,
which 1s discussed in detail below.

If X and Y be the mean firing rates of the excitatory and
inhibitory neurons, respectively, then their time evolution
1s given by the coupled difference equations:

Xn+] — FH(WH Xn_ Wx)‘ YH)! (3)
Yn+1 — Fb(W}'x Xn_ Wy}' Yn)

The network connections are shown in Figure 5. The
W, and W,, terms represent the synaptic weights of

&3

Figure 4. An optimal solution for a 100-city TSP (from Aarts er al.').
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coupling between the excitatory and inhibitory elements,
while W,, and W,, represent self-feedback connection
weights. Although a neuron coupling to itself is
biologically implausible, such connections are commonly
used in neural network models to compensate for the
omission of explicit terms for synaptic and dendritic cable
delays. Without loss of generality, the connection
werghtages W, and W,, can be absorbed into the gain
parameters a and b and the correspondingly rescaled
remaining connection weightages, W,, and W,,, are
labelled k and k', respectively. For convenience, a trans--
formed set of variables, z, = X, — kY, and z;, = X, -k"Y, is
used. Now, if we impose the restriction k = k’, then the
two-dimensional dynamics is reduced effectively to

that of an one-dimensional difference equation (i.e. a
‘map’),

ln+ 1™ .?-(Zn) — Fﬂ(zﬂ) - ka(Zn)a (4)

simplifying the analysis. The dynamics of such a map has
been 1nvestigated for both piecewise linear and smooth, as
well as' asymmetric and anti-symmetric, activation func-
tions. The transition from fixed point behaviour to a
dynamic one (asymptotically having periodic or chaotic
trajectory) has been found to be generic across the
different forms of F. Features specific to each class of
functions have also been observed. For example, in the
case of piecewise linear functions, border-collision
bifurcations and multifractal fragmentation of the phase
space occur for a range of parameter values'®, Anti-
symmetric activation functions show a transition from
symmetry-broken chaos (with multiple coexisting but
disconnected attractors) to symmetric chaos (when only a
single chaotic attractor exists). This feature has been used
to show noise-free ‘stochastic resonance’ in such neural
models®, as discussed in the following section.

Stochastic resonance in neuronal assemblies

Stochastic resonance (SR) is a recently observed
cooperative phenomena in nonlinear systems, where the
ambient noise helps in amplifying a sub threshold signal
(which would have been otherwise undetected) when

w ny
X X 'yy
Figure §. The pair of excitatory (x) and inhibitory (v) neurons. The

arrows and circles  represent excitatory  and  inhibitory  synapses,
respectively.,
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the signal frequency is close to a critical value?' (see
Gammaitoni et al®® for a recent review), A simple
scenario for observing such a phenomenon is a heavily
damped bistable dynamical system (e.g. a potential well
with two minima) subjected to an external periodic signal.
As a result, each of the minima is alternately raised and
lowered In the course of one complete cycle. If the
amplitude of the forcing is less than the barrier height
between the welis, the system cannot switch between the
two states. However, the introduction of noise can give
rise to such switching. This is because of a resonance-like
phenomenon due to matching of the external forcing
period and the noise-induced (average) hopping time
accross the fimte barrier between the wells, and as such, it
is not a very sharp resonance. As the noise level is
gradually increased, the stochastic switchings will
approach a degree of synchronization with the periodic
stgnal until the noise is so high that the bistable structure
1S destroyed, thereby overwhelming the signal. So, SR can
be said to occur because of noise-induced hopping
between multiple stable states of a system, locking on to
an externally imposed periodic signal.

These results assume significance in light of the
observation of SR in the biological world. It has been
proposed that the sensory apparatus of several creatures
use SR to enhance their sensitivity to weak external
stimulus, e.g. the approach of a predator. Experimental
studies involving crayfish mechanoreceptor cells” and
even, mammalian brain slice preparations®, have pro-
vided evidence of SR 1n the presence of external noise
and periodic stimuli. Similar processes have been claimed
to occur for the human brain also, based on the results of
certain psychophysical studies>. However, in neuronal
systems, a non-zero signal-to-noise ratio is found even
when the external noise is set to zero*®. This is believed to
be due to the existence of ‘internal noise’. This pheno-
menon has been examined through neural network
modelling, e.g. in Wang and Wang”’, where the main
source of such ‘noise’ is the effect of activities of adjacent
neurons. The total synaptic input to a neuron, due to its
excitatory and inhibitory interactions with other neurons,
turns out to be aperiodic and noise-like. The evidence of
chaotic activity in neural processes of the crayfish®
suggests that nonlinear resonance due to inherent chaos
might be playing an active role in such systems. Such
noise-free SR due to chaos has been studied before 1n a
non-neural setting?’. As chaotic behaviour is extremely
common in a recurrent network of excitatory and
inhibitory neurons, such a scenario is not entirely unlikely
to have occurred in the biological world. There is also a
possible connection of such ‘resonance’ to the occurrence
of epilepsy, whose principal feature is the synchronization
of activity among neurons.

The simplest neural mode!® which can use its inherent
chaotic dynamics to show SR-like behaviour is a pair of
excitatory—inhibitory neurons with anti-symmetric piece-
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wise linear activation function, viz. F()=-1, if
i<—-1a, F(=az, it ~llagsz< l/a, and F2) =1, if
z> l/a. From eq. (4), the discrete time evolution of the
eftective neural potential is given by the map,

lnsl = f(zn + [u) :“Fa(zn *+ In) - ka(Zn + !n):r

where [ 1s an external input, The design of the network
ensures that the phase space [- 1 +(kb/a),1 —(kbla)] is
divided into two well-defined and segregated sub-
intervals L : [-1 +(kb/a), 0] and R : [0, 1 ~(kb/a)}. For
a < 4, there 1S no dynamical connection between the two
sub-intervals and the trajectory, while chaotically
wandering over one of the sub intervals, cannot enter the
other sub interval. For a >4, in a certain range of (b, k)
values, the system shows both symmetry-broken and
symmetric chaos, when the trajectory visits both sub
intervals in turn. The chaotic switching between the two
sub-intervals occurs at random. However, the average
time spent in any of the sub-intervals before a switching
event, can be exactly calculated for the present model as

i
(n) = —7— - (5)
bk ]_1

bk{ 1——
a

\

As a complete cycle would involve the system switching
from one sub-interval to the other and then switching

- back, the ‘characteristic frequency’ of the chaotic process

is @, = 1/(2{n)). For example, for the system to have a
characteristic frequency of w= 1/400 (say), the above
relation provides the value of k= 1.38{1 for a =6,
b =342, It the input to the system is a sinusoidal signal
of amplitude & and frequency ~ @., we can expect the
response to the signal to be enhanced, as is borne out by
numerical simulations. The effect of a periodic input,
[, = 0sin (2rwn), is to translate the map describing the
dynamics of the neural pair, to the left and right,
periodically. The presence of resonance is verified by
looking at the peaks of the residence time distribution™,

where the strength of the j-th peak is given by

4+ 00
] I
P. =

" ﬂj""’ﬂﬂﬂ

Nn)ydn (0<ea<0.2)5). (6)

For maximum sensitivity, o is set as 0.25. As seen in
Figure 6, the dependence of Pi(j =1, 2, 3) on external
signal frequency, @, exhibits a characteristic non-
monotonic profile, indicating the occurrence of resonance
at w= 1/(2{n)). For the system parameters used 1n the
simuiation, {n) = 200. The results clearly establish that
the switching between states is dominated by the sub-
threshold periodic signal close to the resonant frequency.
This signal enhancement through intrinsic dynamics is an
example of how neural systems might use noise-free SR
for information processing.

CURRENT SCIENCE, VOL. 77, NO. 3, 10 AUGUST 1995
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Formation of neural assemblies via activity
synchronization

Dynamical transitions leading to coherence in brain

activity, in the presence of an external stimulus, have
received considerable attention recently. Most investi-

gations of these phenomena have focussed on the phase
synchronization of oscillatory activity in neural assem-

blies. An example is the detection of synchronization of

‘40 Hz’ oscillations within and between visual areas and
between cerebral hemispheres of cats’' and other animals.
Assemblies of neurons have been observed to form and
separate depending on the stimulus. This has led to the
speculation that, phase synchronization of oscillatory
neural activity is the mechanism for ‘visual binding’. This
1s the process by which local stimulus features of an
object (e.g. colour, motion, and shape), after being
processed 1n parallel by different (spatially separate)
regions of the cortex, are correctly integrated in higher
brain areas, forming a coherent representation (‘gestalt’).
Recent neurobiological studies®? have shown that many
cortical neurons respond to behavioural events with rapid
modulations of discharge correlation. Epochs with a
particular correlation may last from ~ 107 to 10 secs. The
observed modulation of correlations may be associated
with changes 1n the individual neuron’s firing rates. This
supports the notion that a single neuron can intermittently
participate in different computations by rapidly changing
1ts coupling to other neurons, without associated changes
in firing rate. The mechanisms of such dynamic corre-
lations are unknown. The correlation could probably arise
from changes in the pattern of activity of a large number
of neurons, Interacting with the sampled neurons in a

0.4

0.3

0.1

o 0.005 0.01 0.015

@

Figure 6. Peak suengths of the normalized  residence time

distribution, Py (circles), P2 (squares) and Py (diamonds), for periodic
stimulation of the excitatory—inhibifory neural pair (¢ = 6, b = 3.42
and k = 1.3811). Peak amplitude of the periodie signal is d = 0.0008.
Py shows a maxbinum at g signal frequency @, = 17400, Averaging 18
done over I8 different initial conditions, the error bars indicating the
stundard deviation,
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correlated manner. This modification of correlations
between two neurons in relation to stimulation and
behaviour most probably reflects changes in the organi-
zation of spike activity in larger groups of neurons. This
immediately suggests the utilization of synchronization by
neural assemblies for rapidly forming a correlated spatial
cluster. There are indeed indications that such binding
between neurons occurs and the resultant assemblies are
labelled by synchronized firing of the individual elements
with  millisecond precision, often associated with
oscillations in the so-called gamma-frequency range,
centered around 40 Hz.

" Mostly due to its neurobiological relevance as
described above, the synchronization of activity has also
been 1nvestigated in network models. In the case of the
excitatory—inhibitory neural pair described before, even
N =2 or 3 such pairs coupled together give rise to novel
kinds of collective behaviour>. For N =2, synchro-
nization occurs for both unidirectional and bidirectional
coupling, when the magnitude of the coupling parameter
1s above a certain critical threshold. An interesting feature
observed is the intermittent occurrence of desynchro-
nization (in ‘bursts’) from a synchronized situation, for a
range of coupling values. This intermittent synchro-
nization is a plausible mechanism for the fast creation and
destruction of neural assemblies through temporal
synchronization of activity. For N =3, two coupling
arrangements are possible for both unidirectional and
bidirectional coupling: local coupling, where nearest
neighbours are coupled to each other, and global coup-
ling, where the elements are coupled in an all-to-all
fashion. In the case of bidirectional, local coupling, we
observe a new phenomenon, referred to as mediated
synchronization. The equations governing the dynamics
ot the coupled system are given by:

gt = Hel +Az3),
237 = F2h + Az +27)),
23" = F(25 +A23).

For the set of activation parameters a = 100, b =25
(where F 1s of anti-symmetric, sigmoidal nature), we
observe the following feature over a range of values of the
coupling paramcter, A: the ncural pairs, z; and z3 which
have no direct connection between themselves synchro-
nize, although z; synchronizes with neither. So, the system
Z; appears to be ‘mediating’ the synchronization inter-
action, although not taking part in it by itself. This is an
indication of how long-range synchronization might occur
in the nervous system without long-range connections.

For a global, bidirectional coupling arrangement, the
phenomenon of “frustrated synchronization® 1s observed.
The phase space of the entire coupled system 1s shown in
Figure 7. None of the component systems is seen to be

425



ey nnli— .

synchronized. This 1s because the three systems, each
trying to synchronize the other, frustrate all attempts at
collecive synchronization. Thus, the introduction of
structural disorder in chaotic systems can lead to a kind of
‘frustration™, similar to that seen in the case of spin
glasses. These features were of course sudied for very
small systems (V=2 or 3), where all the possible
coupling arrangements could be checked. For larger N
values, the set of such combinations quickly becomes a
large one, and was not checked systematically. We
believe, however, that the qualitative behaviour remains
unchanged.

Image segmentation in an excitatory-inhibitory
network

Sensory segmentation, the ability to pick out certain
objects by segregating them from their surroundings, is a
prime example of ‘binding’. The problem of segmentation
of sensory input is of primary importance in several
fields. In the case of visual perception, ‘object-back-
ground’ discrimination is the most obvious form of such
sensory segmentation: the object to be attended to, is
segregated from the surrounding objects in the visual
field. This process is demonstrated by dynamical transi-
tions in a model comprising excitatory and inhibitory
neurons, coupled to each other over a local neigh-
bourhood. The basic module of the proposed network is a
pair of excitatory and inhibitory neurons coupled to each
other. As before, imposing restrictions on the connection

weights, the dynamics can be simplified to that of the
following one-dimensional map:

in+l = Fﬂ(zﬂ + In) - ka(zn + }:: )& (7)

where the activation function F
sigmotidal nature:

Is of asymmetric,

ul

o
.

&
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4
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Figure 7. Frustrated

Phase three

synchronization:
bidirectional, globally coupled neural pairs (z;, z2, z3) with coupling
magnitude A = 0.5 (a = 100, b= 5 for all the pairs).

space for
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F(2)=1-e ifz>0,

= (, otherwise.

Without loss of generality, we can take 4= 1. In the

following, only time-invariant external stimuli will be
considered, so that:

The autonomous behaviour (i.e. I, I’ = Q) of the isolated
pair of excitatory—inhibitory neurons show a transition
from fixed point to periodic behaviour and chaos with the
variation of the parameters a, b, following the ‘period-
doubling’ route, universal to all smooth, one-dimensional
maps. The introduction of an external stimulus of
magnitude [ has the effect of horizontally displacing the
map to the left by [, giving rise to a reverse period-
doubling transition from chaos to periodic cycles to
finally, fixed-point behaviour. The critical magnitude of
the external stimulus which leads to a transition from a
period-2 cycle to fixed point behaviour is given as>*

+—[In(ua)-1). (8)

To make the network segment regions of different
intensities (I, < [, say), one can fix u and choose a
suitable a, such that I;<I.<1l,. So elements, which
receive input of intensity I;, will undergo oscillatory
behaviour, while elements receiving input of intensity /s,
will go to a fixed-point solution.

The response behaviour of the excitatory-inhibitory
neural pair, with local couplings, has been utilized in
segmenting images and the results are shown in Figure 8.
The mmtial state of the network is taken to be totally
random. The image to be segmented is presented as
external input to the network, which undergoes 200-300
1terattons. Keeping a fixed, a suitable value of u is chosen
from a consideration of the histogram of the intensity
distribution of the image. This allows the choice of a
value for the critical intensity (/.), such that, the neurons
corresponding to the ‘object’ converge to fixed-point
behaviour, while those belonging to the ‘background’
undergo period-2 cycles. In practice, after the termination
of the specified number of iterations, the neurons which
remain unchanged over successive iterations (within a
tolerance value) are labelled as the ‘object’, the remaining
being labelled the ‘background’.

The 1image chosen is that of a square of intensity I, (the
object) against a background of intensity I, (I, < /).
Uniform noise of intensity € is added to this image. The
signal-to-noise ratio is defined as the ratio of the range of
grey levels in the original tmage to the range of noise
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added (given by €). Figure 8 shows the results of
segmentation for unit signal-to-noise ratio. Figure 8 a
shows the original image while segmentation performance
of the uncoupled network 1s presented in Figure 8 b. As is
clear from the figure, the isolated neurons perform poorly
in identifying the ‘background’ in the presence of noise.
The segmentation performance improves remarkably
when spatial interactions are included in the model. We
have considered discrete approximations of circular
neighbourhoods of excitatory and inhibitory neurons with
radii rex and r;(r = 1, 2), respectively, in our simulations.

Results for re, = 1, r;s =2 and re., = r;, = 2 are shown
in Figure 8 ¢, d respectively. The two architectures show
very similar segmentation results, at least up to the
iterations considered here, although the latter i1s unstable.
Excepting for the boundary of the °‘object’, which is
somewhat broken, the rest of the image has been assigned
to the two ditferent classes quite accurately. More
naturalistic images have also been considered, such as a
5-bit ‘Lincoln’ image, and satisfactory results have been
obtained™®. Note that, a single value of a (and hence I,)
has been used for the entire image. This is akin to ‘global
thresholding’. By implementing local thresholding and
choosing a on the basis of local neighbourhood
information, the performance of the network can be
improved.

Outlook

We have pointed out some of the possible uses of
dynamical transitions in a class of network models of
computation, namely excitatory—inhibitory neural net-
works updated at discrete time-intervals. Dynamics
however plays an important role in a much broader class

R
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&

Figure 8. Results of implementing the proposed scgmentation
method on noisy synthetic image: a, original image; &, output of the
uncoupled network; ¢, outpul of the coupled network (rex = I,_ f = 2);
and d, output of the coupled network (rex = nn = 2), after 200 sterations
(u = 20, b/a = 0.25 and tolcrance = 0.02).
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of systems 1mplementing collective computation — cellular
automata™, lattices of coupled chaotic maps®®, ant-colony
models’’, etc. Other examples may be obtained from the
‘Artificial Life’”® genre of models. However, even in the
restricted region that we have focused on, several
important issues are yet to be addressed.

One important point not addressed here is the issue of
learning. The connection weights {W;} have been
assumed constant, as they change at a much slower time
scale compared to that of the neural activation states.
However, modification of the weights due to learning will
also cause changes in the dynamics. Such bifurcation
behaviour, induced by weight changes, will have to be
taken into account when devising learning rules for
specific purposes. The interaction of chaotic activation
dynamics at a fast time scale and learning dynamics on a
slower time scale might yield richer behaviour than that
seen in the present models. The first step towards such a
programme would be to incorporate time-varying connec-
tion weights in the model. Such time-dependence of a
system parameter has been shown to give rise to
interesting dynamical behaviours, e.g. transition between
periodic oscillations and chaos. This suggests that varying
the environment can facilitate memory retrieval 1f
dynamic states are used for storing information in a neural
network. The introduction of temporal variation in the
connection weights, independent of the neural state
dynamics, should allow us to develop an understanding of
how the dynamics at two time-scales interact with each
other.

Parallel to this, one has also to look at the learning
dynamics itself. Freeman®’, among others, has suggested
an important role of chaos in the Hebbian model of
learning®’. This is one of the most popular learning
models in the neural network community and is based on
the following principle postulated by Hebb*® in 1949:

When an axon of cell A is near enough to excite cell B
and repeatedly or consistently takes part in firing it,
some growth process or metabolic change takes place
in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased.

According to the principle known as synaptic plasticity,
the synapse between neurons A and B increase 1its
‘weight’, if the neurons are simultaneously active. By
invoking an ‘adiabatic approximation’, we can separate
the time scale of updating the connection weights from
that of neural state updating. This will allow us to study
the dynamics of the connection weights in isolation.

The final step will be to remove the ‘adiabatic
approximation’, so that the ncural states will evolve,
guided by the connection weights, while the connection
weights themselves will also evolve, depending on the
activation states of the neurons, as:

"Vu(" + ]) - yt‘(lvu(")l Xl(")l ‘Yj(n))l
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W(n) denote the neuron state and

connection weight at the n-th instant, 7 is a nonlinear
function that specifies the learning rule, and € s related to
the time-scale of the synaptic dynamics. The cross-level
effects of such synaptic dynamics interacting with the
chaotic network dynamics might lead to significant
departure from the overall behaviour of the networks
described here. However, it is our belief that, network
models with non-equilibrium dynamics are not only more
realistic’' in the neurobiological sense, as compared to the
models with fixed-point attractors (such as, the Hopfield
network®), but also hold much more promise in capturing
many of the subtle computing features of the brain.
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