SPECIAL SECTION;

L . — e

Kinetics of phase ordering

Sanjay Puri

il _— i —

School of Physical Scicnces, Jawaharlal Nehru University, New Delhi 110 067, India

—

We briefly review our current understanding of phase
ordering kinetics, viz. the far-from-equilibrium
evolution of a homogeneous two-phase mixture which
has been rendered thermodynamically unstable by a
rapid change in parameters. In particular, we

emphasize the large number of unsolved problems in
this area.

e

THERE now exists a good understanding of phase
transitions in physical systems. It has long been known
that a particular physical system (e.g. water) can exist in
more than one phase (e.g. vapour, liquid or solid)
depending upon values of external parameters (e.g.
pressure, temperature). In statistical physics, one formu-
lates microscopic or macroscopic models for such
systems, which have different states as free-energy
minima 1n different regions of the phase diagram.
Calculations with these models are not necessarily
straightforward but there are few conceptual hurdles left
in understanding the static aspects of phase transitions.

Recent attention has turned to the dynamics of phase
transitions, and this article provides an overview of a
particularly important problem in this area. We will
consider the evolution of a homogeneous two-phase
mixture which has been rendered thermodynamically
unstable by a sudden change in parameters. The evolution
of the homogeneous system towards its new equilibrium
state 1s referred to as ‘phase ordering dynamics’ and has
been the subject of intense experimental, numerical and
theoretical investigation'. In this article, we focus upon
the successes and outstanding challenges of research in
this area.

This article is organized as follows. There are two
prototypical problems of phase ordering dynamics. The
ordering of a ferromagnet or evolution with a non-
conserved order parameter is discussed first. The phase
separation of a binary mixture or evolution with a
conserved order parameter is discussed next. Then, we
briefly discuss future directions for studies of phase
ordering dynamics,

Case with nonconserved order parameter

Consider a ferromagnet, which is an assembly of atoms
with residual spin angular momentum. Due to an
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exchange interaction, spins at neighbouring sites tend to
align parallel to each other. This is encapsulated in the
simple Ising Hamiltonian defined on a lattice:

where §; is the z-component of the spin at site {, We
consider the simplest case of a two-state spin so that
S; = =1 in dimensionless units. In eq. (1), J> 0) is the
strength of the exchange interaction which makes it
energetically preferable for neighbouring spins to align
parailel; and A is a magnetic field pointing along the z-
direction. The notation X refers to a sum over nearest-
neighbour pairs. @02

The Ising model in eq. (1) has been a paradigm for
understanding phase transitions in a ferromagnet. With
minimal effort {using mean-field theoryz), we can obtain
qualitative features of the phase diagram. Figure 1 shows
the spontaneous magnetization M as a function of
temperature 7 for a ferromagnet in zero magnetic field
(h = 0). Of course, various behaviours around the critical
point (T =T, h. = 0) are not captured correctly in mean-
field theory, but that will not concern us here.

We are interested in the following dynamical problem.
A disordered ferromagnet at temperature T, > T, is rapidly
cooled to a temperature Tr < T,. Clearly, the ferromagnet
would now be in equilibrium in a spontaneously-
magnetized state, with spins pointing either ‘up’ or
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Figure 1. Spontaneous magnetization M as a function of temperature
T for a ferromagnet in zero field (h = 0). We consider temperature
quenches from Ty > T to Tr < T, at time ¢ = 0.

CURRENT SCIENCE, VOL. 77, NO. 3, 10 AUGUST 1999



NONEQUILIBRIUM STATISTICAL SYSTEMS

L e i ———— e Ml

‘down’. This 1s our first prototypical phase ordering
problem, 1.e. the far-from-equilibrium evolution of the
disordered 1nitial condition to the ordered final state. The
appropriate order parameter which labels the state of the
system 1S the spontaneous magnetization, which takes a
value O in the disordered state; and = M, in the ordered
state. There 1s no constraint on the evolution of the order
parameter with time — hence, this evolution i1s referred to
as the case with nonconserved order parameter.

To obtain a dynamical model for this evolution, we
again consider the Ising model. Unfortunately, this model
has no intrinsic dynamics, as 1s seen by constructing the
appropriate Poisson bracket. This problem 1s circum-
vented by iIntroducing a stochastic kinetics, which 1s
presumed to result from thermal fluctuations of a heat-
bath at temperature 7. The simplest nonconserved kinetics
1s the so-called Glauber spin-flip kinetics, where a
randomly-chosen spin is fhipped as §; = — S;. The change
in configuration is accepted with a probability which must
satisfy the detailed balance condition’. This condition
ensures that the system evolves towards statistical
equilibrium. The Ising model, in conjunction. with
Glauber spin-tlip kinetics, constitutes a reasonable micro-
scopic model for phase ordering dynamics with a
nonconserved order parameter.

We can obtain an equivalent model at the macroscopic
level, in terms of a continuum magnetization field y(r,t).

This field 1s obtained by coarse-graining the microscopic.

spins, with r and ¢ being space and time variables. The
appropriate dynamical equation for nonconserved order-
iIng 1s the time-dependent Ginzburg-Landau (TDGL)
equation or Model A (ret. 4):

QW (r, 1) SFw(F, )] . '
y S0 +0(r,t), (2)

where L 1s an Onsager coefficient. The free-energy
functional F {y(r, )] 1s usually taken to be of the form:

Fly(F,01= | d?{% w7, 1)° +—§-uf.(a ry*

-—hl/l(?,I)+"g"[€7l//(?rt)]2}: (3)

where aoc (T-T,), b, h and K are phenomenological
constants. The Gaussian white noise o(r,t) in eq. (2)
must be chosen to satisfy the fluctuation-dissipation
relation. Eq. (2) can be interpreted in either of two ways.
Firstly, it can be thought of as a generalized Newton's
equation in the overdamped [imit with y as ‘coordinates’;
F{y] as the *potential’; and L™ as the ‘friction constant’,
Secondly, at a more formal level, it can be obtained from
a master equation formulation for the Ising model with
spin-flip kinetics”.

Though all our statements are in the context of an
ordering ferromagnet, it should be stressed that the above
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modelling is applicable to a wide range of physical
systems, with appropriate changes in nomenclature and/or
generalizations of the Hamiltonian or free-energy func-
tional, Furthermore, in most phase ordering problems,
thermal noise is asymptotically irrelevant and the ordering
dynamics 1s governed by a zero-temperature fixed point.
At an intuitive level, this can be understood as follows.
Essentially, thermal fluctuations affect only the interfaces
between domains and have no effect on the bulk domain
structure. However, the interfacial structure is asymp-
totically irrelevant in comparison with the growing
domain length scale. Thus, thermal noise does not alter
the asymptotic behaviour of phase ordering systems.

Equations (2) and (3) are the starting points for most
analytical studies of this problem, which have been
reviewed by Bray'. Essentially, theoretical approaches
assume that there are well-defined domains of ‘up’ and
‘down’ phases, with sharp interfaces between them. The
dynamical evolution of these interfaces i1s governed by the
focal curvature. This interface-dynamics formulation was
used by Ohta er al’ (OJK) to obtain (a) the growth law
for the characteristic domain size L(r) ~ ¢'*; and (b) the
dynamical-scaling form for the time-dependent correlation
function

G(r, t)=(w(f5, t)l;/(fé+?, 1)) Eg[ d ] (4)
L(t)

- In eq. (4), the angular brackets denote an average over
initial conditions and thermal fluctuations; and g(x) is a
time-independent master function, which characterizes the
domain morphology of the evolving system. In physical
terms, the dynamical-scaling property reflects the fact that
the coarsening morphology 1s self-similar in time. Thus,
the only change with time is in the scale of the morpho-
logy. The experimentally relevant quantity in ordering
systems 1S the structure factor S(k,t), which is the
Fourier transform of G (r, ). Scattering experiments on
phase ordering systems give an amplitude proportional to
the structure factor.

An 1mportant extension of the OJK result 1s due to
Oono and Puri®, who incorporated the nonuniversal
eftects of nonzero interfacial thickness into the analytical
form for the correlation function. This extension was of
considerable experimental and numerical relevance because
the nonzero interfacial thickness has a severe impact on
the tail of the structure factor.

The vector version of the TDGL equation, with y(r, 1)
replaced by an n-component vector w(r,r1), is also of
great experimental relevance. For example, the n = 2 case
(dynamical XY model) is relevant in the ordering of
superconductors, superfluids and liquid crystals. The
n=3 case (dynamical Heisenberg model) is also of
relevance in the ordering of liquid crystals; and even in
the evolunon dynamics of the early universe!! Bray and
Puri’ and (independently) T()yukis have used a defect-
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dynamics approach to solve the ordering problem for the
n-component TDGL equation in d-dimensional space for
arbitrary n and d (with n <d). They have demonstrated
that the characteristic length scale L(r) ~ ' in this case
also. Furthermore, they also obtained an explicit scaling
form for the correlation function. The analytical results of
Bray and Puri’ and Toyoki® have stimulated much
experimental and numerical work.

We should stress that the case with n > d is unusual in
that there are no topological defects, and it is not possible
to characterize the evolution of the system in terms of the
annealing of ‘defects’. To date, there are no general
analytical results available for the case of the n-
component TDGL equation with n > d.

Thus, it would be fair to say that we have a good
understanding of phase ordering dynamics in the
nonconserved case. However, we should stress that the
defect-dynamics approach discussed above is essentially
mean-field like and valid only when d — o. There are
important corrections in the finite-dimensional case,
which we do not yet clearly understand. Nevertheless,
most researchers 1n this area would agree that the
nonconserved problem is ‘well understood’. Perhaps this
optimistic evaluation is a result of comparison with the
rather bleak picture which emerges when we consider the
dynamics of phase separation.

Case with conserved order parameter

Consider next a binary mixture of atoms A and B, with
similar atoms attracting and dissimilar atoms repelling
each other. This 1s a fairly ubiquitous situation in
metallurgy and materials science. Again, we assume that
the system is defined on a lattice, whose sites are
occupied by either A- or B-atoms; and there are Ns(Np)
atoms of A(B). We further assume that there are only
nearest-neighbour interactions, as in the case of a
ferromagnet. Then, we can formulate a Hamiltonian for
the binary mixture as follows:

- A A B B
{6 4) {i:4)
A B B _A
+ € Ap Z(nIE n;+n;.n;), (5)
{i.J)

where we have introduced occupation-number variables
n; =1 or 0, depending on whether or not a site i is
occupied by an a-atom. The quantities €xa and €gg (both
less than Q) refer to the attractive energy of an A-A and
B-B pair, respectively. The quantity €45 (> 0) refers to
the repulsive energy of an A-B pair.

[t 1s straightforward to transform the Hamiltonian 1n eq.
(5) into the Ising mode! by introducing spin variables
S;=+1 or -1 1f site { is occupied by A or B, res-
pectively. Clearly, n’= (1 + $,)/2 and n/= (1 - §,)/2, which
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transforms the Hamiltonian in eq. (5) into the Ising
Hamiltonian of eq. (1) (ref. 2). Again, it is simple to
perform a mean-field calculation with this Hamiltonian
but one has to work 1n a *fixed-magnetization’ ensemble,
as % S;=N,—Ng is fixed by the composition of the
mixture. The phase diagram for a symmetric binary
mixture Is shown in Figure 2. There is a high-temperature
disordered phase, where A and B are homogeneously
mixed; and a low-temperature ordered phase, where A and
B prefer to phase separate.

The corresponding dynamical problem considers a
homogeneous binary mixture in the one-phase region,
which i1s rendered thermodynamically unstable by a rapid
quench below the coexistence curve. This 1s our second
prototypical phase ordering problem and pictures of the
resultant evolution will be shown later. The appropriate
order parameter in this case is the local density difference
w(r,t) =pa(r,t) —pa(r,t), where pu(r,t) denotes the
density of species & at point r at time ¢. In contrast to the
ordering dynamics of the ferromagnet, the order
parameter evolution 1n this case must satisfy a local
conservation constraint as phase separation proceeds by
the diffusion of A- and B-atoms. Hence, this evolution is
sald to be characterized by a conserved order parameter.
Typically, the coarsening dynamics proceeds via the slow
process of evaporation of A-rich (or B-rich) domains;
diffusion of this material through domains rich in the
other component B (or A); and condensation on A-rich (or
B-rich) domains elsewhere.

A reasonable microscopic model for phase separation
associates a suitable stochastic kinetic process with the
Ising model, as before. The simplest conserved kinetics is
the Kawasaki spin-exchange process, which interchanges
spins at neighbouring sites. This simple model has been
the basis of Monte Carlo (MC) simulations of phase
separation dynamics.

We can also formulate a phenomenological model for
the dynamical evolution of the order parameter y(r,t),
which is the local density difference of the two species.
The free-energy functional in eq. (3) is still reasonable as
it corresponds to a coarse-grained description of the Ising
model. Currents are set up in the phase-separating system
due to gradients in the chemical potential u(r,t) as
follows:

J(F, 1) ==M )V u(F, ) +7(F, 1)
SFIw(F. 0] ]
IGE

=-M (W)f'/' +ﬁ(F: t). (6)

In eq. (6), M(y) is the mobility and we have introduced a
vector Gaussian white noise 17j(r,t), which models
thermal fluctuations in the current. The evolution of the
order parameter is obtained from the continuity equation
as
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(7)

Equation (7) 1s well known in the literature as the Cahn—
Hillhard—Cook (CHC) equation (or Model B (ref. 4)) and
describes phase separation in binary mixtures when
hydrodynamic effects are not relevant, e.g. binary alloys.
For binary fluid mixtures, hydrodynamic effects play a
crucial role and eq. (7) has to be coupled with the Navier—
Stokes equation for the fluid velocity field — the extended
model 1s described by the Kawasaki equations and is
referred to as Model H (ref. 4).

There have been numerous experimental studies of
phase separation in binary alloys and binary fluid
mixtures''’, These studies found that there is a growing
characteristic domain length scale L(¢), which asymp-
totically exhibits a power-law behaviour in time, i.e.
L(t) ~ t*, where ¢ is the growth exponent. The value of the
exponent ts ¢ = 1/3 for binary alloysg; and ¢ =1 for
binary fluids'’. These experiments have also investigated
the scaling form for the structure factor and its various
features, which we do not enumerate here.

There have also been many numerical studies of phase
separation 1n binary mixtures (alloys or fluids) and these
are 1n agreement with the experimental results quoted
above. The most extensive simulations to date are due to
Shinozaki and Qono'', who used the coarse-grained Cell
Dynamical System models developed earller by Oono and

1
Puri'?.
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Figure 2. Phase diagram of a binary mixture AB in the (¢, 7')-plane,
where ¢ refers to the concentration of (say) A. We consider quenches
from the onc-phase (disordered) region to the two-phase (ordered)
region., There are two different possibilities for the evolution of the
system. if A and B are present in approximately equal proportions (cf,
guench lubelled as 'u’), the System is spontuncously wnstable and
segregates via ‘spinodal decomposition”, I one of the components is
present 1n g much larger (raction (cf. quench labelled as ‘my’), the
mixture separales via ‘nucleation and growth’ of critical droplets.
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However, it 1s not the purpose of this article to review
the numerous experimental and numerical results in this
field. Rather, we would like to focus on the current
analytical understanding of the phase separation problem.
It 1s relatively easy to analytically obtain the growth
exponents for phase-separating binary alloys and fluids'.
However, there has been only limited progress in
developing a good theory for the scaling form of the
correlation function or structure factor. Typically,
approaches based on interface dynamics have not worked
well 1n the conserved case because of the long-range
correlations between movements of interfaces. Sadly
enough, the most complete analytical work in this context
is still the classic work of Lifshitz and Slyozov'’, who
considered the limiting case of phase separation in binary
alloys when one of the components is present in a
vanishingly small fraction.

Therefore, unlike the nonconserved case, there remain
many challenging analytical problems in understanding
domain growth in the conserved case!! We understand
various limiting behaviours of the scaled structure factor
tor the conserved problem, but there is still no compre-
hensive theory which gives the entire structure factor.

Future directions

We have discussed in some detail the two prototyplcal
problems of phase ordering dynamics, viz. the
nonconserved and conserved cases. These two simple
problems provide the launch-pad for a range of further
studies, as we will briefly elucidate here. Recall that the
earlier discussions were in the context of pure and
1sotropic systems. Of course, real experimental systems
are neither pure nor 1sotropic. Recent research in this area
has attempted to incorporate and study various experi-
mentally relevant effects in phase ordering systems. In
what follows, we discuss some of these recent directions.
Phase ordering systems typically contain disorder,
either quenched or annealed. Quenched (or immobile)
disorder is in the form of large impurities, which act as
pinning centres for domain interfaces. Thus, the coar-
sening of domains 1s driven by a curvature-reduction
mechanism only for a transient period. This is followed by
a crossover to a regime in which domains can grow only
by thermally-activated hopping over disorder traps. The
presence of quenched disorder drastically changes the
nature of the asymptotic domain growth law, but does not
appreciably alter the domain morphology of the evolving
system' . Domain growth with quenched disorder has
received considerable attention in the literature and there
are still many 1ssues to be clarified in this context.
Anaother class of important problems concerns the role
of annealed (or mobile) disorder. Let us consider two
particularly tmportant classes of annealed disorder, vie.
surfactants and  vacancies. Surfactants are amphiphilic
molecules which reduce the surface tension berween two
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