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This is a brief review of recent theoretical efforts to
understand persistence in noneguilibrium systems.

— —

THE problem of persistence in spatially extended non-
equilibrtum systems has recently generated a lot of
interest both theoretically'™ and experimentally®", Per-
sistence 1s simply the probability that the local value of
the fluctuating nonequilibrium field does not change sign
up to time £. It has been studied in various systems, inclu-
ding several models undergoing phase separation'™''"'%,
the simple diffusion equation with random initial condi-
tions>®, several reaction diffusion systems in both pure'®
and disordered'’ environments, fluctuating interfaces'®2"
Lotka-Volterra models of population dynamics®, and
granular media™.

The precise definition of persistence is as follows. Let
¢(x, 1) be a nonequilibrium field fluctuating in space and
time according to some dynamics. For example, it could
represent the coarsening spin field in the Ising model after
being quenched to low temperature from an initial high
temperature. It could also be simply a diffusing field
starting from random initial configuration or the height of
a fluctuating interface. Persistence is simply the proba-
bility Py(r) that at a fixed point in space, the quantity
sgn¢(x, 1) — (¢(x, 1))] does not change up to time £, In all
the examples mentioned above this probability decays as a
power law Py(f) ~ £° at late times, where the persistence
exponent @ is usually nontrivial.

In this article, we review some recent theoretical efforts
in calculating this nontrivial exponent in various models
and also mention some recent experiments that measured
this exponent. The plan of the paper is as follows, We
first discuss the persistence in very simple single vartable
systems. This makes the ground for later study of
persistence in more complex many-body systems. Next,
we consider many-body systems such as the Ising model
and discuss where the complexity is coming from. We
follow it up with the calculation of this exponent for a
simpler many-body system namely diffusion eguation and
see that even in this simple case, the exponent 0 is
nontrivial, Next, we show that all these examples can be
viewed within the general framework of the ‘zero
crossing’ problem of a Gaussian stationary process (GSP).
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We review the new results obtained for this general
Gausstan problem in various special cases. Finally, we
mention the emerging new directions towards different
generalizations of persistence.

We start with a very simple system namely the one-
dimensional Brownian walker. Let ¢(f) represent the
position of a 1-D Brownian walker at time r. This is a
single-body system in the sense that the field ¢ has no x
dependence but only ¢ dependence. The position of the
walker evolves as,

d¢
-5;-*—-77(:‘), (1)

where 7(¢) 1s a white noise with zero mean and delta
correlated, (¢(r)¢(¢')) = &t — ). Then persistence Py(t) is
simply the probability that ¢(t) does not change sign up to
time 1, 1.e. the walker does not cross the origin up to time
t. This problem can be very easily solved exactly by
writtng down the corresponding Fokker-Planck equation
with an absorbing boundary condition at the origin™. The
persistence decays as Py(t) ~ £ /% and hence 6 = 1/2. The
important point to note here is that the exact calculation is
possible here due to the Markovian nature of the process
in eq. (1). Note that ¢ evolves according to a first order
equation in time, i.e. to know ¢(¢), we just need the value
of ¢(r—Af) but not on the previous history. This is
precisely the definition of a Markov process.

In order to make contact with the general framework to
be developed in this article, we now solve the same
process by a different method. We note from eq. (1) that
71(¢) 1s a Gaussian noise and eq. (1) is linear in ¢. Hence, ¢

18 also a Gaussian process with zero mean and a two-time

correlator, {(¢(1)¢(+")) = min(t, #) obtained by integrating
eq. (1). We recall that a Gaussian process can be
completely characterized by just the two-time correlator.
Any higher order correlator can be simply calculated by
using Wick’s theorem. Since min(t, 1) depends on both
time f and ¢’ and not just on their difference It — 7], clearly
¢ 1s a Gaussian non-stationary process. From the technical
point of view, stationary processes are often preferable to
non-stationary processes. Fortunately there turns out to be
a simple transformation by which one can convert this
non-stationary process into a stationary one. It turns out
that this transformation is more general and will work
even tor more complicated examples to follow. Theretore
we illustrate it in detail for the Brownian walker problem
in the following paragraph.
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The transformation works as follows. Consider first the
normalized process, X ()= a(t)/y{¢>()) . Then, X(1) is
also a Gaussian process with zero mean and its two-time
correlator is given by, (X(1)X(t)) = min(s, t)/4/(tt)) . Now
we define a new ‘time’ variable, T = log(#). Then, in this
new time variable 7, the two-time correlator becomes,
(X(T)YX(T')) = exp(—=IT - T’1/2) and hence is stationary in
I. Thus, the persistence problem reduces to calculating
the probability Po(T) of no zero crossing of X(T), a GSP
characterized by its two-time correlator, {(X(T)YX(T")) =
exp(— T —-T"I112).

One could, of course, ask the same question for an
arbitrary GSP with a given correlator (X(T)X(T")) =
fUT =T’ [in case of Brownian motion, f(T) = exp(~ T/
2)]. This general zero crossing problem of a GSP has been
studied by mathematicians for a long time**. Few results
are known exactly. For example, 1t is known that if
f(T')< V/T for large T, then Py(T) ~ exp(—uT) for large T.
Exact result 1s known only for Markov GSP which
are characterized by purely exponential correlator,
f(T) = exp(-=AT). In that case, PyT)=(2/m) sin™
[exp(=AT)] (ref. 24). Our example of Brownian motion
corresponds to the case when A = 1/2 and therefore the
persistence Py(T) ~ exp(— 7/2) tor large T. Reverting to
the original time using T = log(#), we recover the result,
P,(t) ~ %, Thus the inverse of the decay rate 1in T
becomes the power law exponent in ¢ by virtue of this
‘log-time’ transformation. Note that when the correlator
f(T) 1s different from pure exponential, the process 1s
non-Markovian and 1n that case no general answer 1s
known.

Having described the simplest one-body Markov pro-
cess, we now consider another one-body process which
however is non-Markovian. Let ¢(t) (still independent of
x) now represent the position of a particle undergoing
random acceleration,

d%
dr

€90 =nw), ©

where 7(t) is a white noise as before. What is the
probability P(¢) that the particle does not cross zero up to
time t? This problem was first proposed in the review
article by Wang and Uhlenbeck® way back in 1945 and it
got solved only very recently 1in 1992, first by Sinai*’,
followed by Burkhardt?’ by a different method. The
answer is, Pu(t) ~ " for large t and the persistence
exponent is 6 = 1/4. Thus even for this apparently simple
looking problem, the calculation of € is nontrivial. This
nontriviality can be traced back to the fact that this
process is non-Markovian. Note that eq. (2) 1s a second
order equation and to know ¢(t + Ar), we need to know its
values at two previous points ¢(r) and ¢(r — Ar). Thus, 1t
depends on two previous steps as opposed to just the
previous step as in eq. (1). Hence it is a non-Markovian
Process.
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We notice that eq. (2) is still linear and hence ¢(¢) is
still a Gaussian process with a non-stationary correlator.
However, using the same T = log(t) transformation as
defined 1n the previous paragraph, we can convert this to
the zero crossing problem in time T of a GSP with
correlator, f(7') =5 exp(-T/2) — + exp(- 37/2). Note that
this 1s different from pure exponential and hence is non-
Markovian. We also notice another important point: It is
not correct to just consider the asymptotic form of

f(T)~ 5 exp(-T/2) and conclude that the exponent is

therefore 1/2. The fact that the exponent is exactly 1/4,
reflects that the ‘no zero crossing’ probability Py(T)
depends very crucially on the full functional form of f(T)
and not just on its asymptotic form. This example thus
1llustrates the history dependence of the exponent € which
makes 1ts calculation nontrivial.

Having discussed the single particle system, let us now
turn to many body systems where the field ¢(x, r) now has
x dependence also. The first example that was studied is
when ¢(x, t) represents the spin field of one-dimensional
Ising model undergoing zero temperature coarsening
dynamics, starting from a random high temperature
configuration. Let us consider for simplicity a discrete
Jattice where ¢(i, t) = + 1 representing Ising spins. One
starts from a random initial configuration of these spins.
The zero temperature dynamics proceeds as follows: at
every step, a spin 1s chosen at random and its value is
updated to that of one of its neighbours chosen at random
and then time 1is incremented by At and one keeps
repeating this process. Then persistence 1s simply the
probability that a given spin (say at site i ) does not flip up
to time £. Even in one dimension, the calculation of Py(t)
is quite nontrivial. Derrida et al.* solved this problem
exactly and tound Py(t) ~ ¢ for large ¢t with 6 = 3/8.
They also generalized this to g-state Potts model 1n
1-D and tound an exact formula, &g) --—-I{;+———--[c(:asl
(2 - g2 q})* for all g. '

This calculation however cannot be easily extended to
d = 2 which 1s more relevant from an experimental point
of view. Early numerical results indicated that the
exponent @ ~ 0.22 (ref. 3) for 4 = 2 Ising model evolving
with zero temperature spin flip dynamics. It was theretore
important to have a theory in d = 2 which, if not exact, at
lcast could give approximate results. We will discuss later
about our efforts towards such an approximate theory of
Ising model in hugher dimensions. But before that et us
try to understand the main difficulties that one encounters
in general in many-body systems.

In a many-body system, if one sits at a particular point
x tn space and monitors the local field ¢(x, 1) there as a
function of ¢, how would this ‘effective’ stochastic process
(as a function of time only) look Like? If one Knows
enough properties of this single site process as a function
of time, then the next step is to ask what is the probability
that this stochastic process viewed from x as a function of
t, does not change sign up to time 1. So, the general
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stratcgy Involves two steps: first, one has to solve the
underlying many-body dynamics to find out what the
‘eftective’ single site process looks like and second, given
this single site process, what is its no zero crossing
probability.

Before discussing the higher dimensional Ising model
where both of these steps are quite hard, let us discuss a
simple example (which however is quite abundant in
nature), namely the diftusion equation. This is a many-
body system but at least the first step of the two-step
strategy can be carried out exactly and quite simply. The
second step cannot be carried out exactly even for
this simple example, but one can obtain very good
approximate results.

Let ¢(x, t) (which depends on both x and r) denote field
that 1s evolving via the simple diffusion equation,

ﬂzvz
ot

This equation ts deterministic and the only randomness is
in the initial condition ¢(x, 0) which can be chosen as a
Gaussian random vartiable with zero mean. For example,
&(x, 1) could simply represent the density fluctuation,
Hx, 1) = p(x, 1) —{p) of a diffusing gas. The persistence,
as usual, 1s simply the probability that ¢(x, 1) at some x
does not change sign up to time t. This classical diffusion
equation 1 so simple that it came as a surprise to find that
even in this case, the persistence Py(r) ~ r? numerically
with nontrivial 8=0.1207, 0.1875, 0.2380ind =1, 2 and
3, respectively,

In the hght of our previous discussion, it is however easy to
see why one would expect a nontrivial answer even in this
simple case. Since the diffusion equation (3) is linear, the
field ¢(x, r) at a fixed point x as a function of t is clearly a
Gausstan process with zero mean and is simply given by
the solution of eq. (3), ¢(x, t) = J d'x’ G(x—-Xx', Do(x’, 0),
where G( X, 1) = (A1) exp[— x*/41] is the Green's func-
tion in 4. Note that by solving eq. (3), we have already
reduced the many-body diffusion problem to an ‘effec-
tive’ single-site Gaussian process in time ¢t at fixed x. This
theretore completes the first step of the two-step strategy
mentioned earlier exactly. Now we turn to the second
step, namely the ‘no zero crossing’ probability of this

¢. (3)

single-site Gaussian process. The two-time correlator of

this can be easily computed from above and turns out to
be non-stationary as in the examples specified by eqs (1)
and (2). However by using the T = log(¢) transformation as
before, the normalized field reduces to a GSP in time T with
correlator, (X(T)X(Ty)) = [sech(T/2)]**, where T = IT\-T»l.
Thus, once again, we are back to the general problem of the
zero crossing of a GSP, this time with a correlator
AD = [sech(T/2)]"* which is very different from pure expo-
nential form and hence is non Markovian. The persistence,
Po(T ) will still decay as Py(T) ~ exp(- 6T ) ~ % for large
T (since f(T) decays faster than 1/T for large T) but
clearly with a nontrivial exponent.
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Since persistence in all the examples that we have
discussed so far (except the Ising model) reduces to the
zero crossing probability of a GSP with correlator f(T)
[where f(T) of course varies from problem to problem],
let us now discuss some general properties of such a
process. It turns out that a lot of information can already
be inferred by examining the short-time properties of
the correlator f(7). In case of Brownian motion, we
found AT) = exp(-T72) ~ | = 772 + O(T*) for small T. For
the random acceleratmn problem f(T)= —exp(—-— T/2) ——-
exp(-37/2) ~ 1 = 3T%8 + O(T?) for small T ancl fer
the diffusion problem, f(T) = [sech(T/2)]*?*~1 -4 T2
+O(T? as T— 0. In general f(T)=1-aT%+ for

small 7, where O< o £2 (ref. 24). It turns out that
processes for which o= 2 are ‘smooth’ in the sense that
the density of zero crossings o is finite, 1.e. the number of
zero crossings of the process in a given time T scales
linearly with 7. Indeed there exists an exact formula due
to Rice’, P =J—f’(0) /T when a=2. However, for
<2, f7(0) does not exist and this formula breaks down.
It turns out that the density is infinite for < 2 and once
the process crosses zero, it immediately crosses many
times and then makes a long excursion before crossing the
zero again. In other words, the zero’s are not uniformly
distributed over a given interval and in general the set of
zeros has a fractal structure.”

Let us first consider ‘smooth’ processes with a =2
such as random acceleration or the diffusion problem. It
turns out that for such processes, one can make very good
progress 1n calculating the persistence exponent 6.

The first approach consists of using an ‘independent
interval approximation® (IIA)’. Consider the ‘effective’
single-site process ¢(T) as a function of the ‘log~time’
T = log(t). As a first step, one introduces the ‘clipped’
variable o = sgn(¢), which changes sign at the zeros of
¢(T'). Given that ¢(7') is a Gaussian process, it is easy to
compute the correlator, A(T) = (a(0)o(T)) = -ﬁ- sin”™
[ F(T)], where f(T) is the correlator of ¢(T). Since the
‘clipped’ process o(T) can take values + 1 only, one can
express A(T) as,

A(T)= 2 (-D"P(T), (4)

n=_

where P,(T) 1s the probability that the interval T contains
n zeros of ¢(T). So far, there is no approximation. The
strategy next 1s to use the following approximation,

P,(T)=(T)""[ dr, Jyam, Jﬁ:‘ dT, x

Q(T;,)P(Tz “ﬂ)P(Tn _Tn—l) Q(T_Tn)* (3)
where P(T) i1s the distribution of intervals between two
successtve zeros and Q(T) is the probability that an
interval of size T to the right or left of a zero contains no

further zeros. Clearly, P(T) = - Q(T). (T) = 1/p 1s the
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mean 1nterval size. We have made the IIA by writing the
joint distribution of n successive zero-crossing intervals
as the product of the distribution of single intervals. The
rest is straightforward®. By taking the Laplace transform
of the above equations, one finally obtains, P (s)=[2-F
(s)}/F (8), where

F(s)=l+-l—s[1-5/z(5)], . ‘ (6)

2p

where the Laplace transform A (s) of A(T) can be easily
computed knowing f(T). The expectation that the
persistence, Py(T') and hence the interval distribution,
P(T) ~ exp(- O0T) for large T, suggests a simple pole in
the P (s) at s = — 6. The exponent 8 is therefore given by
the first zero on the negative s axis of the function,

1 25 -
F(s):l-l—_;ﬁ—)—s{l—-;r—-f:dr exp(—s7T) sin l[f(T)]}.
(7)

For the diffusion equation, AT) = [sech(7/2)]¥* and
p=\/d/87[2_ We then get the IIA estimates of
6 =0.1203, 0.1862 and 0.2358 in d =1, 2 and 3 respec-
tively, which should be compared with the simula-
tion values, 0.1207 £0.0005, 0.1875 +0.0010 and
0.2380 £ 0.0015. For the random acceleration pro-

blem, AT) =% exp(-T/2) —5 exp(-37/2) and p=\3/2n

and we get, 6;, = 0.2647 which can be compared with its
exact value, 8 = 1/4.

Though the IIA approach produces excellent results
when compared to numerical simulations, 1t cannot
however be systematically improved. For this purpose, we
turn to the ‘series expansion’ approach® which can be
improved systematically order by order. The idea is to
consider the generating function,

P(p,ty="S p"P, (1), " (8)
n=0

where P,(t) is the probability of n zero crossings in time ¢
of the ‘effective’ single-site process. For p =0, P(0, 1) 1s
the usual persistence, decaying as 2 as usual. Note that
we have used 6(0) instead of the usual notation 6, because
it turns out® that for general p, P(p, t) ~ 9 for large t,
where O(p) depends continuously on p for ‘smooth’
Gaussian processes. This has been checked numerically as
well as within IIA approach®. Note that for p =1,
P(l,t)=1 implying O(1) =0. For smooth Gaussian
processes, one can then derive an exact series expansion
of &p) near p=1. Writing p"=exp(nlogp) and
expanding the exponential, we then obtain an expansion in
terms of moments of n, the number of zero crossings,

— (log _P)f_<”r>

r!

(Y)

log P(p,t)=

{ 9
r=I
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where (n'). are the cumulants of the moments. Using
p=1-¢ we express the right hand side as a series in
powers of €. Fortunately, the computation of the moments
of n is relatively straightforward, though tedious for
higher moments. We have already mentioned the result of
Rice for the first moment. The second moment {n*) was
computed by Bendat’. We have computed the third
moment as well®. For example, for 2-D diffusion equation,
we get the series,

1 1 1 5, 13
B(p=l—-&)=—=¢+| ——-—— |+ 0(£).
(p ) - (nz 47:) (€7) (10)

Keeping terms up to second order and putting £ =1 (in
the same spirit as € expansion in critical phenomena)
gives, 6(0) = (w + 4)/47° = 0.180899. . ., just 3.5% below
the simulation value, 6, = 0.1875 + 0.001. Thus, this
gives us a systematic series expansion approach for
calculating the persistence exponent for any smooth
(Gaussian process.

Note that both the above approaches (IIA and series
expansion) are vahid only for ‘smooth’ Gaussian processes
(a=2) with finite density p of zero crossings. What
about the nonsmooth processes where 0 < < 2, where
such approaches tail? Even the Markov process, for which
f(T) =exp(— AT) is a non-smooth process with o = 1.
However, for the Markov case, one knows that the
persistence exponent 8 = A exactly. One expects therefore
that for Gaussian processes which may be non-smooth but
‘close” to a Markov process, it may be possible to
compute 6 by perturbing around the Markov result. ,

In order to achieve this, we note that the persistence
P,(T) in stationary time T, can be written formally® as the
ratio of two path 1ntegrals,

2| De(r)expl-S]
PO(T)=-—J¢}0 Zl

AR (11)
[Dp(t)expl-S]  Zo

where Z; denotes the total weight of all paths which never
crossed zero, 1.e. paths restricted to either positive or
negative (which accounts for the factor 2) side of ¢ =0
and Z;, denotes the weight of all paths completely un-
restricted. Here § =-'2--Jg L:ﬂqb(rl) G(t,~73) ¢(7)dr dr)
is the ‘action’ with G(1,-7;) being the inverse matrix of
the Gaussian correlator f(1,—-1,). Since Py(T) 1s expected
to decay as exp(— O0T) for large T, we get,

I
O =~1im —log (7).
Iy T g Iy(T)

(12)
If we now interpret the time T as inverse temperature f3,
then 0= E,- F, where £, and L, are respectively the
ground states of two ‘quantum’ problems, one with a
‘hard’ wall at the origin and the other without the wall.
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For concreteness, first constder the Markov process,
f(T) = exp(— AIT). In this case, it is easy to see that S is
the action of a harmonic oscillator with frequency A. The
ground state energy, E,=A/2 for an unrestricted
oscillator with frequency A. Whereas, for an oscillator
with a “hard” wall at the oricin, it is well known that
E, = 3A/2. This then reproduces the Markovian result,
8= E,— E, = A. For processes close to Markov process,
such that f(T) = exp(— AT) + € fi(T), where € is small, it
i1s then straightforward to carry out a perturbation expansion
around the harmonic oscillator action in orders of € (ref. 4).
The exponent 6, to order &, can be expressed as,

24 ¢ 32
0 =A1-£== [ f{(T)[1-exp(-2AT)] >2dT |.
0

- (13)
)

At this point, we go back momentarily to the zero
temperature Glauber dynamics of Ising model. Note that
the spin at a site in the Ising model takes values either ]
or —1 at any given time. Therefore, one really cannot
consider the single-site process s(f) as a Gaussian process.
However, one can make a useful approximation in order
to make contact with the Gaussian processes discussed so
far. This 1s achieved by the so-called Gaussian closure
approximation, first used by Mazenko®' in the context
of phase ordering kinetics. The idea is to write,
s(t) = sgn{(1)], where ¢(t) now is assumed to be Gaussian.
This 1s clearly an approximation. However, for phase
ordering kinetics with nonconserved order parameter, this
approximation has been quite accurate’’. Note that within
this approximation, the persistence or no flipping proba-
bility of the Ising spin s(¢) is same as the no zero crossing
probability of the underlying Gaussian process ¢(1).
Assuming ¢(r) to be a Gaussian process, one can compute
1ts two-point non-stationary correlator self-consistently.
Then, using the same ‘log—time’ transformation (with
T =log(r)) mentioned earlier, one can evaluate the
corresponding stationary correlator (7). We are thus
back to the general problem of zero crossing of a GSP
even for the Ising case, though only approximately.

In 1-D, the correlator f(T) of the underlying process
can be computed exactly, f(T) = ,/2/7+ exp(21T 1)) (ref.
4) and in higher dimensions, it can be obtained
numerically as the solution of a closed differential
equation. By expanding around, T = 0, we find that in all
dimensions, @ =1 and hence they represent non-smooth
processes with infinite density of zero crossings. Hence,
we cannot use IIA or series expansion result for 6. Also due
to the lack of a small parameter, we cannot think of this
process as ‘close’ to a Markov process and hence cannot
use the perturbation result. However, since 8= FE, -~ E,
quite generally and since a =1, we can use a variational
approximation to estimate E, and E;,. We use as trial
Hamiltonian that of a harmonic oscillator whose fre-
quency A is our tunable variational parameter’. We just
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mention the results here, the details can be found in
Majumdar and Sire, and Sire et al.’. For example, in
d=1, we find 8=0.35 compared to the exact result
6=3/8.Ind=2and 3, we find 8=0.195 and 0.156. The
exponent tn 2-D has recently been measured
experimentally’ in a liquid crystal system which has an
effective Glauber dynamics and is in good agreement with
our variational prediction.

So far we have been discussing about the persistence of
a single spin in the Ising model''. This can be
immediately generalized to the persistence of ‘global’
order parameter in the Ising model. For example, what is
the probability that the total magnetization (sum of all the
spins) does not change sign up to time t in the Ising
model? It turns out that when quenched to zero
tem%erature, this probability also decays as a power law
~t ¢ with an exponent 6, that is different from the

- single spin persistence exponent 8. For example, in 1-D,

8, =1/4 exactly” as opposed to 6 = 3/8 (ref. 2). A natural
interpolation between the local and global persistence can
be established via introducing the idea of ‘block’
persistence. The ‘block’ persistence is the probability p(¢)
that a block of size / does not flip up to time . As [
increases from O to o, the exponent crosses over from its
‘local’ value 8to its ‘global’ value 6,.

When quenched to the critical temperature T, of the
Ising model, the local persistence decays exponentially
with time due to the flips induced by thermal fluctuations
but the ‘global’ persistence still decays algebraically,
~t™% where the exponent 6. is a new non-equilibrium
critical exponent''. It has been computed in mean field
theory, 1n the n — oo limit of the O(n) model, to first order
in £ =4 ~d expansion''. Recently this epsilon expansion
has been carried out to order £ (ref. 12).

Recently, the persistence of a single spin has also been
generalized to persistence of ‘patterns’ in the zero
temperature dynamics of 1-D Ising or more generally g-
state Potts model. For example, the survival probability of
a given ‘domain’ was found to decay algebraically in time
as ~ % (ref. 14), where the g-dependent exponent
042)=0.126 (ref. 14) for g =2 (Ising case), different
from 6 =3/8 and 6, = 1/4. Also, the probability that a
‘domain’ wall has not encountered any other domain wall
up to time ¢ was found to decay as ~ ¢~ with yet another
new exponent 6,(q), where 6,(2) = 1/2 and 6,(3) =0.72
(ref. 15). Thus, it seems that there is a whole hierarchy of
nontrivial exponents associated with the decay of
persistence of different patterns in phase ordering systems.

Another direction of generalization has been to
investigate the ‘residence time’ distribution, whose limit-
ing behaviour determines the persistence exponent’,
Consider the effective single-site stochastic process ¢(r)
discussed 1n this paper. Let r(¢) denote the fraction of time
the process ¢(r) is positive (or negative) within time
window [0, r]. The distribution f(r,t) of the random
variable r i1s the residence time distribution. In the limits
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r— 0 or r — 1, this distribution is proportional to usual
persistence. However, the full function f(r, f) obviously
gives more detailed information about the process than its
limiting behaviours. This quantity has been studied
extensively for diffusion equation”*, Ising model™,
Le’vy processes™, interface models® and generalized
Gaussian Markov processes°.

The various persistence probabilities in pure systems
have recently been generalized to systems with disorder'’.
IFor example, what is the probability that a random walker
in a random environment (such as in Sinai model) does
not cross the origin? Analytical predictions for the
persistence in disordered environment have been made
recently based on an asymptotically exact renormalization
group approach'’. |

Another 1mportant application of some of these
persistence ideas, experimentally somewhat more relevant
perhaps, is in the area of interface fluctuations'®'®. The
persistence 1n Gaussian interfaces such as the Edwards—
Wilkinson model, the problem can again be mapped to a
general GSP but with a non-Markovian correlator'®. In
this case, several upper and lower bounds have been
obtained analytically'®. For nonlinear interfaces of KPZ
types, one has to mostly resort to numerical means'’. The
study of history dependence via persistence has provided
some deeper 1nsights into the problems of interface
fluctuations'™*’,

On the experimental side, the persistence exponent has
been measured in systems with breath figures®, soap
bubbles'’ and twisted nematic liquid crystal exhibiting
planar Glauber dynamics’. It has also been noted
recently’’ that persistence exponent for diffusion equation
may possibly be measured in dense spin-polarized noble
gases (Helium-3 and Xenon-129) using NMR spectro-
scopy and imaging33. In these systems, the polarization
acts like a diffusing field. With some modifications these
systems may possibly also be used to measure the
persistence of ‘patterns’ discussed in this paper.

In conclusion, persistence 1s an interesting and
challenging problem with many applications in the area of
nonequilibrium statistical physics. Some aspects of the
problem have been understood recently as reviewed here.
But there still exist many questions and emerging new
directions open to more theoretical and experimental efforts.
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