RESEARCH COMMUNICATIONS

Impact of modern software
engineering practices on the
capabilities of an atmospheric general
circulation model

Ravi S. Nanjundiah* and U. N. Sinha’

*Centre for Atmospheric and Oceanic Sciences. Indian Institute of
Science, Bangalore 560 012, India

"Flosolver Unit, National Aerospace Laboratories, Kodihalli Campus,
Bangatore 560 017, India

In this note, we discuss the relevance and impact of a
software engineering effort at NAL on the forecast
model in operation at the National Centre for Me-
dium Range Weather Forecasting (NCMRWF). The
code has been re-written exploiting the features of
Fortran 90. As a direct consequence of appropriate
reengineering efforts on the code, it is both easy to
comprehend and modify. The reengineered code is
appreciably shorter (number of lines in the code re-
duced by 55%) and can run on a variety of comput-
ing platforms including a PC, without the need for
any forther modifications to the code.

A General Circulation Model (GCM) used for numerical
weather prediction is among the most complex computer
codes from the view-point of mathematics as well as
software engineering. Mathematically, a GCM encom-
passes an ensemble of sub-models to describe various
physical processes (as different as radiation and turbu-
lence) that occur simultaneously within the atmosphere.
From the view-point of software engineering, all these
diverse sub-models need to be integrated correctly and
perform in unison to generate a forecast. Therefore, nu-
merical weather prediction (with the associated atmos-
pheric modelling) has been considered as one of the
grand challenge problems for high performance comput-
ing. Hence it is not surprising that all over the world, the
most powerful computers have always been used by
weather forecasting centres. Most weather forecasting
software codes presently in use were originally devel-
oped in the mid 1980s when memory and computational
power were at a premium, compilers were not as highly
developed as the present day ones and software engi-
neering (with emphasis on ease of usage) was not con-
sidered a major issue. The emphasis therefore was on
exploiting the power of the then available high perform-
ance computing platforms. Most present-day weather
forecasting codes have evolved from those developed in
the 1980s and still retain most features of their original
codes from a software engineering view-point. In the
process, such codes used for weather forecasting lack
transparency and are very cryptic and difficult to com-
prehend, thus making modification and experimentation
extremely difficult. This has resulted in numerical

1114

- N — il e —

T apid,

modelling of the atmosphere to become the exclusive
domain of a few select centres worldwide (and even
fewer within the country). However, with the tmproved
power of microprocessors, the evolution of more power-
ful programming tanguages and a better appreciation of
modern software engineering techniques, it is feasible to
reengineer this traditional high performance computing
application to make the code more comprehensible, fa-
cilitate research and development and to exploit the
burgeoning power of microprocessors. In this note we
discuss the impact of applying modern software engi-
neering practices to GCMs, with specific reference to
the GCM used by the National Centre for Medium
Range Weather Forecasting (NCMRWF), New Delhi.

The model used at NCMRWF has a spectral resolution
of T-80 (eighty modes with trtangular truncation) and
has 18 levels in the vertical. It integrates the equations
of mass, momentum and energy conservation (in addi-
tion to equations specifying boundary conditions) to
generate forecasts for the entire globe. Details of this
model are discussed in by Kalnay et al.'. It was pro-
vided to the National Aerospace Laboratories (NAL),
Bangalore, in 1993, as part of a national initiative on
use of parallel computers for weather forecasting. The
original code was successfully implemented 1n the paral-
lel mode on the Flosolver Mk3 (ref. 2). Subsequently,
another version of the model was successfully imple-
mented on the SP2 parallel computer in the Super com-
puter Education and Research Centre (SERC) at the
Indian Institute of Science (1ISc)’ and successfully used
in a climate mode (i.e. for simulations extendlng OVer
time period of several years).

During these efforts it was strongly felt that the code
lacked transparency and was very difficult to compre-
hend and experiment with, and therefore not suitable as
a research tool. This lead to a major effort 1n re-
engineering of the code exploiting features of Fortran 90
(ref. 4).

The objectives of the reengineering project were: (1)
to make the code transparent and easy to comprehend
and modify; and (ii) to remove limitations of coding
practices due to Fortran 77 by rewriting it in Fortran 90.

The procedure followed to attain these objectives can
be broadly summarized as follows:

1. Redundant code was removed, especially in the re-
petitive application of the same code for computing
different quantities.

2. Common blocks, the bane of traditional Fortran pro-
sramming were climinated. Memory allocation for
clobal variables was made modular.

3. For optimal memory utilization, the Fortran 90 fea-
tures of dynamic allocation and deallocation ot
memory, and pointers (not availabie with older ver-
sions of Fortran) were exploited.

CURRENT SCIENCE, VOL. 76, NO. 8, 25 APRIL 1999

RESEARCH COMMUNICATIONS

4. Iterative statements using hard-coded numbers (for
specifying the range) were replaced with statements
incorporating variables/parameters as the range-
specifiers.

5. Conditional statements (IF and GO TO) were sim-
plified. An example of the differences between old
and new codes 1s shown in Appendix A.

6. Names of variables/routines were made transparent
and comprehensible so that their functionality be-
comes clear. The older version of the code used the
older Fortran standard of utilizing only seven charac-
ters to identify a variable which resulted in the vari-
able/procedure names to be terse and cryptic. A
typical example of this i1s given in Table 1.

The same array (SYN) was used for divergence, tem-
perature and log(surface pressure). In the new version of
the code, the names have been made more descriptive.
The new name Di_Fourier clearly suggests that this
variable is used for storing divergence in the Fourier—
latitude space.

As a result of this effort, the rewritten code reduced
from 40,000 lines to 18,000 lines. This reduction oc-
curred due to the fact that similar (but not identical)
computations (such as summation of spectral coeffi-
cients, etc.) were conducted i1n several routines. Due to
the reengineering efforts, these could be consolidated
into fewer routines and the size of the code was thus
reduced. The modular structure of memory assignment
also helped in shrinking the size of the code.

The reengineered code should have a significant im-
pact on the atmospheric modelling. The significant im-
plications are:

e We have a code that is completely portable across
platforms. The reengineered code has been success-
fully tested on diverse platforms such as the IBM
RS6000/595 (the basic processor tor the IBM SP2),
the MIPS R10000 (the processor used in SGI Ori-
gin) and a PC based on Pentium II. It is noteworthy
that no changes were required in the code to run on
any of these platforms.

e Using PCs, almost any college or university can now
offer training in numerical weather modelling.
Therefore, the lack of computational infrastructure
will no longer be a major bottleneck for manpower
training. As a consequence a larger pool of trained
manpower can be generated.

Table 1. Comparison of names of vari-
ables in the old and new versions of the

code
Old name New name
SYN Di_Fourier
SYN Te_Fourier
SYN Q_Fuurier

CURBENT SCIENCE, VOL. 76, NO. 8, 25 APRIL 1990

e We have a powerful research tool. Unlike the older
version of the NCMRWF model, the reengineered
code 1s easy to comprehend and modify. The resolu-
tion can be changed by changing just three lines in a
single memory module. In contrast, the original
NCMRWF model required more than hundred
changes in different segments of the code (and one
could not still be sure that all the required changes
had been incorporated). Additionally, the hard-
coding in spectral transform computations made it
almost 1mpossible to increase resolution. On the
contrary, the reengineered code can now be used for
weather forecasting (high resolution, short integra-
tions), climate modelling and simulation (medium
resolution, long integrations) and can be an ideat
‘hands on’ tool in classroom teaching (very low
resolutions).

e Ease of modification can facilitate research by dif-
ferent groups with diverse interests and seamlessly
incorporate 1improvements into the code. In the In-
dian context, this could mean more cost-effective re-
search 1n the field of monsoon modelling and
stmulation. Simulation of monsoon 1s considered to
be one of the major challenging problems for GCMs,
as no model has been able to capture all the features
of the monsoon even on the seasonal scale’. Improv-
ing the monsoon simulation would require research-
ers from diverse fields such as radiation, turbulence
and boundary layer modelling and numerical meth-
ods to incorporate their contributions to the model.
The present reengineered model would be an 1deal
vehicle for such experimentation.

In conclusion, 1t appears that, if used properly, the
reengineered code holds out the prospect of revolution-
izing the way atmospheric modelling s conducted
within the country.

Appendix A

An example of replacement of the old code by a more read-
able and transparent code 1s given below.

Old code:

DOI100]I=1,1X
DW(D=max(RWFL*SOLWT(1),0.)
DW{({D=min(DW(I),1.)

IF (SLMSK(1).NE.1.0) THEN
DW() = 1.0
ENDIF

IF(SLMSK(N.EQ.1.0). AND.(SNOCOV(D.GT.0.0)) THEN
DW{d)=1.0
ENDIF
100 CONTINUE

bi1S

RESEARCH COMMUNICATIONS

New code:

Dw(:}=Rwi{l*Solwt(:)
WheretDw(:) < 0.0)Dw(:)=0.0
Where(Dw(:) > 1.0)Dw(:)=1.0
Where(Stmsk(:) /= 1.0)Dw{:)=1.0
Where(Slmsk(:)==1.0 .And. Snocov > 0.0)Dw(:)=1.0

Another example where GO TO statments were removed
leading to a greater transparency of the code was in the calcu-
lations of model dates (this small piece of code had 13 GO
TO statements). The old and new versions of the code are

shown below.
Old code:

IYEAR=IYR
NDAY=JD-JDOR
IF(FID.GE..5 E 0) NDAY=NDAY+]
61 IF(NDAY.LT.1462) GO TO 62
NDAY=NDAY-146]
IYEAR=IYEAR+4
GO TO 61
62 NDIY=3635
IFIMOD(YEAR,4).EQ.0) NDIY=366

IF(NDAY.LE.NDIY) GO TO 65
IYEAR=IYEAR+]
NDAY=NDAY-NDIY

GO TO 62

65 IF(NDAY.GT.INT(DY(2))) GO TO 66
IM=1
ID=NDAY

GO TO 67

66 IF(NDAY.NE.60) GO TO 68
IF(INDIY.EQ.365) GO TO 68
IM=2
ID=29

GO TO 67
68 IF(NDAY.GT.(INT(DY(3))+NDI1Y-365)) GO TO 69

IM=2
GO TO 67
69 DO 701=3,12

[FINDAY.GT.(INT(DY (I+1)+NDIY-365)) GO TO 70
IM=l
ID=NDAY-INT(DY(I))-NDIY+365
GO TO 67

CONTINUE

New code:

IYEAR=IYR

FHIG6

NDAY=JD-JDOR

IF(FJD >= (0.5) NDAY=NDAY+l

DO
IF(NDAY < 1462) EXIT
NDAY=NDAY-1461
IYEAR=IYEAR+4
ENDDO

DO
NDIY=365
IFIMOD(IYEAR 4) == 0) NDIY=366
IF(NDAY <= NDIY) EXIT
IYEAR=IYEAR+]
NDAY=NDAY-NDIY

ENDDO
If_Blockl:&
IF(NDAY <= INT(DY(2))) THEN
M=1
ID=NDAY
ELSEIF(NDAY .EQ. 60 . AND. NDIY .NE. 365) THEN
IM=2
ID=29
ELSEIF(NDAY <= INT(DY(3)) + NDIY -365)THEN
IM=2
ID=NDAY-31
ELSE
DO 1=3,12
IF(NDAY <= INT(DY(I+1))+NDIY-365)THEN
iM=I
ID=NDAY-INT(DY(I})-NDIY +365
EXIT
ENDIF
ENDDO
ENDIF &
It Blockl

4.

5.

Kalnay, E., Sela, J., Campana, K., Basu, B. K., Schwarzkopf, M.,
Long, P., Caplan, M. and Alpert,].. Documentation of the Re-
search Version of the NMC Medium Range Forecast Model,
1998.

Sinha, U. N., Sarasamma, V. R., Rajalakshmy, §,, Subramantum,
K. R.. Bhardwaj, P. V. R., Chandrashekhar, C. S., Venkatesh, T.
N.. Sunder, R., Basu, B. K., Gadgil, S. and Raju, A., Curr. Sci.,
1994, 67, 178-184.

Nanjundiah, R. S. and Raju, A., Experiments in Parallel Imple-
mentation of the NCMRWTF Model, Intromet ‘97, 2-5 December
1997, IIT New Delhi, 1997.

Flosolver Team, Status Report on Development of meteorological
software at Flosolver. NAL report NAL PDFS 9816, Sept 1998.
Gadgil, S. and Sajani, S., Clim. Dyn., 1998, in press.

ACKNOWLEDGEMENTS. We thank Prof. R. Narastiwha for his
suggestions.

Received 12 October 1998; revised accepted 10 February 1999

CURRENT SCIENCE, VOL. 76, NO. 8, 25 APRIL 1999

