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Quantitation of multiple sclerosis lesion volumes
on magnetic resonance imaging
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Multiple sclerosis is the most common demyelinating
disease. Currently a number of clinical trials are un-
derway for treating this disease, MRI-defined lesion
burden is considered to be an useful marker for
evaluating the efficacy of treatment. Quantitation of
lesion burden in a clinical trial involving a large
number of images requires a technique with minimal
manual intervention. In this brief review we describe
segmentation techniques, that are used in our labora-
tory, for automatic quantitation of lesion burden. A
brief review of the novel pulse sequences for generat-
ing images with superior lesion-to-tissue contrast

required for automatic lesion quantitation is also
presented.

NEURAL tissue volumetry can provide fundamental in-
formation about the development and function of normal
human brain and can yield important clues regarding the
underlying pathology in patients'?, For instance, valu-
able information has been gained about the pathological
processes in epilepsy’ and Alzheimer’s disease? from the
volume measurements of various structures in the brain.
In many focal diseases such as multiple sclerosis (MS)
and some cancers, the total lesion volume is thought to
reflect the overall disease burden and therefore may be
useful for quantitating the disease and objectively
evaluating the effect of therapeutic intervention™®.
Quantitative tissue volumetry is commonly based on
radiologic images. Different tissues are identified on the
images, either manually or assisted by computer, for
computing the volumes. The process of identifying and
isolating a given tissue is generally referred to as seg-
mentation. Segmentation allows for colour coding of
different tissues for improved delineation and ease of
visual identification of pathology. Segmentation is also
useful in radiation therapy’ and for simulating sensitive
procedures for interventional neumsurgeryg'g.
Segmentation is the most critical step in quantitating
tissue volumes. The ability to accurately segment and
quantitate a given tissue volume critically depends on
the contrast-to-noise ratio on the image. The introduc-
tion of magnctic resonance imaging (MRI) into the
clinical arena has greatly increased the interest in lissue
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segmentation for at least two reasons. Firstly, MRI pro-
vides superb soft tissue contrast which allows clear
identification and segmentation of different soft tissues.
For instance, it is very easy to distinguish gray matter
(GM), white matter (WM), and cerebrospinal fluid
(CSF) in brain MRI. Secondly, MRI is a multi-
parametric modality in the sense that tissue contrast can
be altered by simply changing the scan parameters or
pulse sequences. This multi-parametric nature of MRI
plays a crucial role in image segmentation.

The focus of this review is on the quantitation of MS
lestons in the brain and reflects our own research inter-
est. MS is the most common demyelinating disease in
humans'’. It is a complex disease with a relapsing re-
mitting course'’, MRI is the radiologic modality of
choice for non-invasively visualizing lesions and clini-
cally following MS patients. Recent studies suggest that
MRI is capable of detecting sub-clinical activity'® and
that MRI-defined lesion burden (or total lesion volume)
may provide an objective measure of the disease sever-
ity. Therefore, there is a considerable interest in using
MRI-estimated quantitative lesion Joad as an outcome
measure in clinical trials">™"’. Such an cutcome measure
can considerably reduce the cost of conducting clinical
trials since fewer patients are required to achieve statis-
tical sigmficance. This is particularly relevant in view of

a large number of ongoing clinical trials for treating MS
patients.

Segmentation techniques

Segmentation 1nvolves the classification of tissues on
images. Segmentation can be performed using a variety
of techniques that have been recently reviewed ', Of
all these techniques, three methads have been predomi-
nantly employed for segmentation of MS lesions'’,
These are (1) manual tracing, (2) intensity-based single
image scgmentation, and (3) mufti-spectral methods,
Both manual tracing and thresholding are sunple to use
and require relatively little additional sofiware devel-
opment. However, these techniques are prone to opera-
tor bias, time consuming, and impractical for analysing a
large number of images™* ™. The accuracy of these
techniques depends on how rigorously the quality con-
trol is maintatned.
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Multispectral technigques

A unique fcaturc of MRI is the ability to alter the rela-
tive contrast of tissues simply by maatpulating the pulse
sequences and/or pulse scquence parameters. For in-
stance, both MS lesions and CSF appear bright on 73-
weighted spin echo 1mages. On the other hand, MS le-
sions appear bright on density-weighted images while
CSF appears somewhat i1sointense with the rest of the
brain parenchyma. In T)-weighted 1mages lesions gen-
erally appear i1sointense with the parenchyma and CSF
appear hypointense. Multispectral segmentation tech-
niques, which are based on multiple 1image sets, exploit
the powcrtul multi-parametric nature of MRI. In con-
trast, both manual tracing and thresholding are per-
formed using a single set of images. The multi-spectral
segmentation techniques are generally more robust since
they combine information from multiple image sets with
different contrast for tissue classification.

The concept of multi-spectral segmentation was origi-
nally developed for classification of the earth surface,
based on images acquired with LANDSAT?®,
LANDSAT is the name used by NASA for satellites de-
signed for monitoring the earth’s resources. The sensors
of LANDSAT acquire images at different spectral re-
gions (wavelengths). Each frame of the LANDSAT im-
agery consists of four images of the same scene acquired
in the red, green, and two infrared spectral regtons. The
segmented image is then generated by combining infor-
mation from all four images. Similar multi-spectral
techniques can be applied, by combining data from mul-
tiple MR 1mages with different contrasts to classify an
image into different tissue classes”. The input images
used for tissue classification are referred to as ‘features’.
The pixel intensities of the basis set of images are gen-
erally referred to as ‘feature vectors’. Multi-spectral
segmentation can be performed either by ‘feature space-
based’ or by ‘non-feature space-based’ methods. In this
article, only the feature space-based techniques will be
discussed. Artificial neural network-based techniques®,
adaptive segmentation’’ and model based techniques’*
which have been recently proposed will not be 1ncluded
in this review.

In the feature-based, multi-spectral segmentation
technique, the feature vector is typically plotted in a n-
dimensional space, referred to as the ‘feature space’,
where n is the number of image sets. For instance, n = 2,
if dual echo images are used for segmentation. In a two-
dimensional (2D) feature space, the abscissa corre-
sponds to the pixel intensities in one image, while the
ordinate corresponds to intensities in the second nmage.
In an ideal case, one can see clear clustering of ditferent
tissues in the feature space. Based on these clusters, it is
possible to classify different tissues and calculate the
individual volumes. Each tissue is assigned an arbitrary,
but unique, colour for visual inspection of the images. In
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reality, due to limited tissue contrast and image noise,
considerable overlap exists between these clusters, re-
sulting in some ambiguity in the tissue classification.

Feature space classification

Due to the considerabie overlap between different tis-
sucs in the feature space, 1t 1s essential to utilize statisti-
cal techniques for partitioning the feature space into
different tissue classes. This ‘feature space classifier’
can be either supervised or unsupervised. In this review
we will concentrate on the supervised multi-spectral
segmentation techniques, reflecting our own research
interest. Unsupervised techniques such as those based
on fuzzy logic and fuzzy connectivity®' will not be dis-
cussed here. The supervised methods require the opera-
tor to generate ‘training sets’ of data. The training set is
generated by sampling 30 to 40 points of each tissue on
the 1mages by an expert. These points are plotted in the
feature space and a feature space classifier 1s invoked
which partitions the feature space, based on the training
set’?*. The feature space classifier can be either
parametric (maximum likelihood method or MLM) or
nonparametric (k-nearest neighbours or KNN and
Parzen window)’”. The MLM method assumes a particu-
lar distribution of the features, usually a multi-variate
Gaussian. Clarke er al.’® have recently compared the
parametric and nonparametric techniques and found the
KNN technique to be optimum both in terms of accuracy
and stability. Parzen technique falls in the same category
as the KNN technique and 1s more appropriate for lower
dimensional feature space. Parzen technique also assures
convergence for smaller sample size. In all our studies,
we utilize Parzen window technique for tissue classifi-
cation. Although this is a supervised technique in the
sense that the operator input is required for generating
the training set, Narayana and Borthakur’’ have demon-
strated that by performing intensity normalization on all
data sets, it is possible to utilize a single ‘master’ fea-
ture map for segmentation of all the images. The use of
a master map, therefore, allows for automatic segmenta-
tion of MR images, effectively eliminating the operator
bias and dramatically reducing the time requirements for .
segmentation,.

Multi-spectral segmentation techniques most com-
monly utilize dual echo images (approximately density-
weighted and T7,-weighted 1mages) as input 1m-
ages > Some investigators have also utilized other
input images such as T,-weighted’” and magnetization
transfer contrast (MTC) images40. While this strategy
provides fairly accurate classification of GM, WM, and
CSF, it generates a large number of false positive and
false negative lesion classifications, mainly due to lim-
ited lesion-ta-tissue contrast (LTC). Therefore accurate
segmentation of lesions requires considerable manual
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intervention which introduces significant operator bias
and increases the analysis time. Hence, segmentation
techniques based on conventional MR images for lesion
guantitation met with Iimited success.

Affirmative images

The quality of lesion quantitation, irrespective of the
segmentation technique used, critically depends on the
LTC. Many lesions appear in the peri-ventricular re-
gions and experience considerable partial volume aver-
aging with the CSF, which degrades the LTC. Therefore
any sequence which suppresses the CSF without a con-
comitant lesion suppression should improve the LTC.
Indeed it was shown that the LTC can be considerably
improved by suppressing the CSF through the use of
FLAIR (Fluid Aftenuation by Inversion Recovery)
technique®’. MS lesions predominantly occur in the
WM. Therefore, the LTC can also be mmproved if the
surrounding white matter is suppressed without greatly
affecting the intensity of the lesions. This can be real-
ized to some extent by exploiting the differences in the
magnetization transfer ratios (MTR) between WM and
the lesions***. Generally the surrounding WM has a
higher MTR than the leston. Therefore, incorporation of
magnetization transfer pulse into the imaging sequence
preferentially suppresses the WM signal relative to that
of the lesion®. It is possible to incorporate MTR and
CSE suppression into a single imaging sequence and
substantially improve the LTC. Bedell et al.*> have de-
veloped an 1maging sequence which accomplishes this
and christened it AFFIRMATIVE (Attentuation of Fluid by
Fast Inversion Recovery with MAgnetization Transfer Im-
aging with Variable Echoes). The AFFIRMATIVE se-
quence generates four images per slice. These correspond
to early and late echo fast spin echo (FSE) images and early
and late echo i1mages which incorporate both MTC and
FLAIR (FLAIR/MTC images). As a typical example, the
four AFFIRMATIVE images from a section of the brain
are shown in Figure 1. From this figure the improved
LTC in the late echo FLAIR/MTC (d) compared to the
FSE 1images (a and b) can be easily appreciated. In fact,
some of the cortical and subcortical lesions which arc
hardly visible in the FSE images can be clearly seen in
the FLAIR/MTC images. Visualization of cortical and
sub-cortical MS lesions may be particularly important
since these lesions may play an important role in the
functional deficit seen in some of the MS patients.

Image pre-processing

Lesion quantitation requires a series of image processing
steps. These include image filtration for improving the
signal-to-noise ratio (SNR), covrecting for the radio fre-
quency (RF) 1nhomogeneity, and removal of extra-
menmgeal tissues (EMT) from the images.
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Figure la-d. Axial images of a MS brain acquired with the
AFFIRMATIVE sequence. a, FSE image with TE = 17 ms; b, FSE image
with TE =102 ms; ¢, FLAIR/MTC image with TE=17ms; and d,
FLAIR/MTC image with TE = 102 ms. The other imaging parameters are;
TE = 10,000 ms, slice thickness =3 mm, field-of-view = 240 mm, ac-
quisition matrix of 256 x 128 (image matrix of 256 x 256), number of
excitations = 1. The clear visualization of cortical and sub-cortical lesions
in the late echo FLAIR/MTC image, d, compared to the FSE images can
easily be appreciated. (Reprinted from ref. 45 with permission).

Figure 2a-d. Scpmented images based on dual echo FSE, (), and dual
eclio FLAIR/MTC image, (). WM is represented in pink, GM in grey.
CSE in blue, and lesions in yellow. For comparison the eatly echo FSE,
(a), and late gcho FLAIR/MTC, (B), images are alse shown The huge
number of fulse positives seen in b ure mostly chasnated in ¢
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Figure 3a-d. FLAIR/MTC-based segmented images in the posterior
fossa region with various corrections. b, no correchion, ¢, flow-
correction: and d, flow and ghost correction. For comparison the late
echo FLAIR/MTC image is shown in a. The elimination of false
positives in d, can easily be appreciated.

Anisotropic diffusion filter

Poor SNR compromises the quality of segmentation. In
a clinical setting it is not practical to perform signal
averaging over a long period of time to improve the
SNR. Therefore, it is essential to filter the 1mages. How-
ever, care has to be exercised in choosing the filter so as
not to blur the image and lose information. A number of
groups have been using, with considerable success, the
anisotropic diffusion filter, originally proposed by
Perona and Malik*. Studies by Gerig et al*’ and Jack-
son et al.*® suggest that the application of this filter re-
duces the low frequency noise without a concomitant
blurring of the edges. Application of this filter was
found to increase the SNR in the images by a factor of

approximately 2.2 (ref. 48). This filter can be set-up so-

that the parameters characterizing it can be automati-
cally generated from the image®".

RF inhomogeneity correction

RF inhomogeneity modulates the image intensity that
will have a deleterious effect on the segmentation. The
importance of RF inhomogeneity in multi-spectral seg-
mentation has been pointed out by a number of invest1-
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gators®’. Even though modern RF coils, such as bird
cage resonator_, are designed to produce homogeneous
RF field throughout the imaging volume, some RF field
inhomogeneity still exists. Studies by Jackson et al*®
suggest that the RF field inhomogeneity, at least in part,
is responsible for the observed scan-to-scan and interob-
server variation in the segmentation. A number of tech-
niques have been proposed for the RF inhomogeﬁeity
correction. Narayana and Borthakur’’ have implemented
a relatively simple algorithm, similar to that proposed
by Harris et al.’', to correct for the RF inhomogeneity
and investigated its effect on the segmentation. This
algorithm is based on the fact that the RF inhomogeneity
contains only low frequency spatial components that can
be filtered out. The smoothed image, following filtra-
tion, contains information about the i1n-plane RF inho-
mogeneity. However, such a smoothing introduces
ringing artifacts around the regions in the image with
steep intensity gradients, such as those encountered near
the ventricles and the edge of the brain. The first step to
circumvent this problem is to identify those pixels which
deviate from the mean parenchymal intensity by one
standard deviation or more using a histogram analysis.
Next, these pixels are replaced by the mean intensity of
the brain parenchyma. The resulting images are
smoothed with, for example, a 25 X 25 averaging filter.
This smoothed or the blurred image reflects the in-plane
RF profile. The anistropically filtered images are di-
vided by this RF profile to obtain the corrected 1mage.
All the corrected images are normalized based on the
average CSF pixel intensities from a representative data
set. Narayana and Borthakur’’ have shown that without
the RF correction, the segmentation underestimates the
cortical GM and overestimates the WM and that the RF
correction reduces both the scan-to-scan and i1nter-
subject variability. A very important consequence of the
RF inhomogeneity correction and intensity normaliza-
tion of the images is that a single feature map can be
used for tissue segmentation for all subjects/scans. This
procedure, therefore, converts an otherwise semi-
automatic technique into an automatic one. Contrary to
the conclusions reached by Velthuizen et al.®’ that RF
correction did not have a significant effect on the seg-
mentation of tumour tissues, we find the RF correction
to be very critical for automating the lesion quantitation.
As implemented by Narayana and Borthakur’’, the RF
correction scheme does not compensate for the RF field
variation along the slice selective direction. Correcting
for the RF homogeneity in all dimensions requires a
complicated algorithm.

Image stripping

In multispectral segmentation, the extra-meningeal tis-
sues (EMT) are a major source of false positives. There-
fore removal or stripping of the EMT from the images is

CURRENT SCIENCE, VOL. 76, NO. 6, 25 MARCH 1999
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Figure 4. Segmented images from four patients from four different centers (bottom row) automatically generated using a single ‘master’ fea-
ture map. The corresponding late echo FLAIR/MTC images are shown in the top row. The excellent segmentation quality can easily be appre-

ciated 1n these images.

a crucial operation that needs to be performed prior 10
segmentation. Automatic removal of the EMT is a non-
trivial problem. Traditionally removal of EMT 1s real-
ized by using a variety of semiautomatic techniques as de-
scribed by Cline et al >, Brummer et al>} and Ardekani et
al>* have recently described automatic techniques for the
removal of EMT based on one or two echo images. The
relatively poor contrast seen on their images mandated
these investigators to incorporate a number of heuristics,
which are not always valid, resulting in a stgnificant error in
the EMT removal. Recently Bedell and Narayana™ have
implemented an algorithm for automatic removal of EMT
based on the multi-spectral segmentation technique using
the AFFIRMATIVE images, which exhibit excelient paren-
chyma-to-EMT contrast, as the input data. Their studies
demonstrate that this technique works well even in very

difficult regions, namely those near the vertex and oplic
nerve, and the inferior temporal gyri.

Segmentation

With all the necessary pre-processing steps completed, 1t
is possible 10 segment AFFIRMATIVE images for de-
termining the lesion load. As indicated carlier, the
AFFIRMATIVE sequence gencrates four images per
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slice. It 1s therefore possible to generate a 4D feature
map for segmentation. However, segmentation based on
a 4D feature space taxes even very powerful computers.
Instead, it is more efficient to perform segmentation
based on multiple 2D feature maps with various combi-
nations of images. In order to evaluate the 1improvement
in the quality of segmentation by incorporating the
FLAIR and MTC, initial segmentation was performed
using the early and late echo FSE images. This is quite
similar to the dual echo images which formed the basis
images in a number of earlier multi-spectral segmenta-
tion techniques. Segmentation was also performed using
the early and late echo FLAIR/MTC images. The results
of the segmentation along with the input images at the
level of lateral ventricles are shown in Figure 2. As can
easily be appreciated from this figure, the FSE-based
segmentation produces a large number of false positive
and false negative lesion quantitation. The number of
false classifications has dramatically decreased in the
FLAIR/MTC-bascd scgmented images.

Flow correction

Scpmentation based on FLAIR/MTC tmages works well
for regions superior to the lateral ventricles. But itis fac
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Figure 5. Automatic segmentation of enhancements at different
brain focations in a MS patient. The T)-weighted images acquired
with the pulse sequence described in the text are shown in the first
colurnn. The imaging parameters are: TE =25 ms, TR = 800 ms,
slice thickness = 3 mm, acquisition matrix of 256 X 128 (image ma-
trix of 256 x 256), FOV = 240 mm, number of excitations = 0.5. The
enhancing vasculature was suppressed using marching sat bands and
eradient dephasing techniques. Automatic identification without
post-processing corrections is shown in the second column. The
enhancing choroid plexus can be seen in these 1mages. Segmented
tmages, following the post-processing correction described in ref. 71,
are shown in the third column. Note the elimination of non-lesion
enhancing structures in these images. (Reprinted from ret. 71 with
permission).

from satisfactory in the slices inferior to the lateral ven-
tricles. A careful inspection of the segmentation results
indicates the prevalence of false positives in the regions
with substantial vascular and CSF flow such as insula,
posterior fossa, and cerebellum. As demonstrated by
Bedell et al.®’, it is possible to automatically identify
and eliminate these regions using the MR flow 1mages.
In particular, it is possible to identify both vascular flow
(coherent flow) and CSF flow (incoherent flow) on 3D
phase contrast images. Incorporation of the flow
information into the segmentation process considerably
reduces the number of false positives even 1in the
difficult regions such as posterior fossa, as shown in
Figure 3.

Even after the incorporation of flow information into
segmentation, the segmented images still show a few
false positives arising from flow ghosts which mimic
lesions. As Bedell et al.*®> have demonstrated, it is pos-
sible to automatically identify and eliminate these ghost-
induced artifacts. The improvement in the segmentation
following the correction for the flow ghosts is shown in
Figure 3d. As can be appreciated, at least visually, the
quality of segmentation appears fairly good after cor-
recting for the flow and ghost-induced artifacts.
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Figure 6 a-d. Quadruple contract images from a MS brain. The
images correspond to a, short echo FSE; b, long echo FSE; c,
WM/CSF suppressed, and d, GM/CSF suppressed. The tmaging pa-
rameters are: TE =10 ms, TR = 10,000 ms, echo train length =12,
shice  thickness =3 mm, acquisition matrnix of 128 X256

(image matnx of 256 x 256), FOV = 240 mm, number of excita-
tions = 1,

As indicated earlier, with this technique, generation of
a single master map 1s adequate for segmenting all 1m-
ages generated on different patients. This can be seen in
Figure 4 which shows the FLAIR/MTC and segmented
images from different centers, generated using a single
feature map. Finally, Wolinsky e? al>® applied this
technique in quantitating lesions in 718 patients from 27
centers, the largest study of its kind, with excellent re-
sults.

Evaluation and validation

Quantitative evaluation of any segmentation technique is
a non-trivial problem. The quality of segmentation 1n
general is evaluated in terms of stability (i.e. inter- and
intra-rater variability) and accuracy. The multi-spectral
segmentation based on AFFIRMATIVE images is fully
automatic except for the initial generation of the master
feature map and, therefore, the inter- and intra-operator
variabilities have little meaning. However, evaluation of
the accuracy of any lesion quantitation 1s much more
difficult simply because the true lesion volumes are not
known. While reasonable estimation of the accuracy of
lesion quantitation can be realized using phantoms, such
as the one proposed by Jackson et al 8, it hardly mimics
the complex neuro-anatomy and physiology. Therefore,

CURRENT SCIENCE, VOL. 76. NO. 6, 25 MARCH 1999
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it 1S not uncommon to evaluate the accuracy of segmen-
tation techniques by comparing the segmentation results
with those generated manually by an expert. Wolinsky
et al.>® have reported such a validation using images on
185 patients. These authors report a correlation coeffi-
cient of 0.98 (P < 0.01). To the best of our knowledge,
this 1s the largest study of its kind that has been ever
performed for validating any segmentation technigue.

Quantitation of enhancing lesions

An Important aspect of the pathophysiology of acute MS
lesions is the presence of perivenous inflammation and
associated disruption of regional blood—brain barrier.
This loss of local blood-brain barrier can be visualized
as an enhancement on Tj-weighted MRI following the
administration of a paramagnetic contrast agent such ag
gadopentate dimeglumine (Gd). Some of these enhanc-
Ing lesions are clinically symptomatic and Gd enhance-
ment 1s used as a surrogate marker for evaluating the
therapeutic efficacy’’. Correlation between active le-
sions, as determined on histopathology, and contrast
enhancement has been demonstrated™®*®, It is, therefore,
important to determine either the volume and/or the
number of enhancing lesions. This is generally realized
either using manual’™®® or computer assisted®®.
and more recently using completely automatic tech-
niques®°, Both visual identification and automated
volumetric analysis of enhancing lesions are compli-
cated by other enhancing structures, such as cerebral
vasculature and regions such as choroid plexus in which
the blood-brain barrier is absent. These regions mimic
lesion enhancements. In the automatic technique based
on fuzzy connectivity, these false lesions are discarded
by the operator®. Bedell and Narayana' have adapted a
new strategy which is based on images generated with a
new pulse sequence and post-processing technique for
automating the detection of lesion enhancements. The
pulse sequence is based on a spin echo sequence which
incorporates both stationary and marching saturation
bands and gradient dephasing for suppressing enhance-
ments  within the cerebral vasculature. The post-
processing technique automatically identifies other non-
lesion enhancing structures such as choroid plexus. Thus
only truly enhancing lesions are identified and quanti-
fied in the final segmented images. A typical set of 1m-
ages demonstrating the performance of this technique is
shown in Figure 5. Based on a limited number of patient
studies, this technique appears to perform well. How-
ever, these authors pointed out thal this automated
technique gives rise to a few false positives. The size of
these false positive enhancements, however, appears (o
be smalier than 3 pixels, These false positives contribute
rclatively little to the estimated (otal cnhancing volume
and, therefore, this technique appears to be uscful for
computing the total enhancing volume.
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Quadruple contrast imaging

A common problem with MRI is the partial volume av-
eraging between different tissues. The partial volume
averaging results in both false positive and false nega-
tive lesion classifications. Partial volume averaging can
be reduced by acquiring thinner slices with smaller pix-
els. This is achieved by prolonging the acquisition time.
In any case, the ultimate attainable resolution is limited
by the available SNR. Bedell and Narayana’' recently
implemented a new FSE-based pulse sequence, called
quadruple contrast sequence, which reduces the partial
volume averaging by simultaneously suppressing CSF
and either GM or WM in the image. This pulse sequence
1s based on the double inversion recovery concept,
originally proposed by Redpath et al.’? for a conven-
tional spin echo sequence. The quadruple contrast se-
quence, as Implemented by Bedell and Narayana’',
produces four images for each slice. These are: (1) fast
spin echo image (either short or long echo), (2) fast
FLAIR image, (3) WM and CSF suppressed image, and
(4) GM and CSF suppressed images. A typical example
of quadruple contrast images is shown in Figure 6. It is
interesting to note that lesions appear hyperintense and
more conspicuous in the CSF/WM suppressed images
compared to FLAIR/MTC images. The same lesions.
however, appear hypointense on the CSE/GM sup-
pressed images. This dramatically different appearance
of lesions on different images is expected to generate
tight clusters in the feature space and lead to an accurate
segmentation. Images generated with this sequence have
been so far used only for quantitating GM, WM, and
CSF in normal cases.

A very interesting feature of quadruple contrast im-
ages 18 that lesions appear different in different IMmages,
perhaps reflecting their pathologic heterogeneity. Thus,
this sequence appears to have the potential for not only

providing information about the lesion volumes but also
about their heterogenous pathology.

Conclusions

In this brief review, we presented techniques that are
developed and implemented in our laboratory for quanti-
tating MS lesions. Our research is driven by the need to
automate lesion quantitation techniques for use in clini-
cal trials involving the analysis of hundreds of thou-
sands of MR images. This requires the development of
novel pulse sequences for improving the LTC and newer
analysis techniques for automating the lesion quantita-
tton. In future, it may be possible to noninvasively char-
acterize their pathology based on newer Haging
sequences. ‘The clinical implications of such an ability
are obvious. While our main interest is in MS, the tech-
niques described above can be easily applied to other
focal pathologies.
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