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This paper focuses classification of crystal classes in
a periodic table using the known neural network
(NN) learning algorithm, viz. ceneralized delta rule
(GDR) by feeding the set of input features in max-
min-max sub arrays. We have taken eighteen inde-
pendent physical parameters for each element, trained
the network from atomic number (AN) 1 to 84 and
we validated the crystal class from AN 86 to 95 from
the trained network and achieved 100 per cent ac-
curacy, which was later extended from AN 96 fo
120. Further, we have also evaluated the dependencies
of the neural network in different confidence intervals
and hidden layers. We would like to call this learning
algorithm as max-min-max GDR.

ArTIFICIAL neural network (ANN) is one of the burgeoning
areas of current research and it is attracting people from
a wide variety of disciplines of science and technology.
It is known that the human brain is built of cells called
neurons. A collection of neurons are linked together in
such a way that individual neurons can perform separate
functions simultaneously. Such a collection of neurons
is called a neural network (NN)'.

In ANN the fundamental unit that we employ is an
approximated electronic/mathematical model of a neuron.
The connection strength between layers is called weight.
The process of adjustment of weights is called learning
or training’. Humans are intelligent because evolution
has equipped them with a richly structured brain. This
structure. while serving a variety of functions, enables
them to learn. Learning procedure is constructing new
representations, and the results of learning can be viewed
as numerical solutions to the problem of whether to use
local or distributed representations’. Basically there are
three types of learning: Supervised learning (training with
teacher), Unsupervised learning (training without teacher),
and Hybud learning (which falls between supervised and
unsupervised learning). Reinforcement learning is a variant
of supervised learning wherein the network Is provided
with only a critigue on the correctness of the network
outputs, not correct answers themselves®.

The work on ANN models started around early 40s.
Basically there are four main landmarks, viz. Mc Culloch
and Pitt’s pioneering work (1940s), Rosenblatt’s percep-
tron tule ~ LMS aleorithm (1960), the Back propagation
algorithm (1974s) which has been modified a number
of times, and Hopfield's energy approach (1982).
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Fieure 1 a depicts an example of a typical processing
unit for an ANN. On the left are the multiple inputs
to the processing unit, each arriving from another unit,
which is connected to the unit shown at the center.
Each interconnection has an associated connegction
strength, given as W, W,, ..., W The processing unit
performs a weighted sum on the inputs and uses a
nonlinear threshold function (f), to compute its output.
The calculated result is sent along the output connections
to the target cells shown at the right. ln the above
network output (Y)) is given oy

n
Ys"ﬁz W X;. (1)
j=1
Commonly used activation (squashing) functions are:
threshold function, piecewise linear, sigmoid (Figure 10},
and gaussian. The sigmoid function is by far the most
frequently used in ANNs. It is a strictly increasingly
function that exhibits smoothness and has the desired
asymptotic properties. This is a crude analogy to a
biological neuron: wires and interconnections model
axons and dendrites; connection weights represent
synapses, and the threshold function approximates the
activity in soma.

Capabilities of the network can be further enhanced
by cascading a group of single ANNs, to form a
multilayer neural network. Output of one layer is the
input to the next layer as shown in Figure 1c¢. Based
on the connection pattern (architecture), ANNs can be
grouped into two categories: (i) feedforward (static or
memoryless), in which graphs have no loops, and (i1)
recurrent (feedback or dynamic) networks, in which
loops occur because of feedback connections.

There are three main areas of research on connectionist
networks: search, representation, and learning. This paper
focuses on learning. We have used neural networks for
periodic table crystal classification because they have
no mathematical models for prediction or classification.
To increase capability of the network, we have used
multilayer network. For better accuracy of the output
we have used modified sigmoid function at the inter-
nal representation units, and the output at node J

(Figure 1¢) is f{x) and is given by,

IAGE l , ~ (2)

1005 4 e—(Ncl X 4—9} )HJ“

where
NetX=z W, X, Gj,
j

serves as a threshold or bias, its function is to shift
the activation function to the left along the horizontal
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axis. € will modify the shape of the sigmoid function
as shown in Figure 1 b.

We have trained the NN for different numerical con-
stants (1.5, 1.45, - - -, 0.50) at the denominator of equation
(2), and achieved minimum error for 1.005. Thts function
is highly nonlinear, continuous, and continuously dif-
ferentiable. The back propagation algorithm (BPA) is
an iterative gradient algorithm designed to minimize the
mean square error between the actual output and the
desired output. This algorithm is also known as “The
generalized delta rule’, The neurons in layers, other than
the input and output layers are called hidden units or
hidden nodes, as their outputs do not directly interact
with the environment. With the BPA, the weights
associated with hidden layers can also be adjusted and
thus enable the ANN to learn. For our above-stated
problem we tried with number ot hidden layers from 1
to 4, but we got better performance when the hidden layer
was one, and in that layer three nodes were taken. In the
following section we discuss the working of NN.

In practice NNs cannot provide the solution working
by themselves alone, rather, these need to be integrated

Into & consistent system engineering approach. Specifi-
cally, a complex problem of interest is decomposed into
a number of relatively simple tasks, and NNs are assigned
a subset of the tasks (e.g. pattern recognition, associative
memory control) that match their inherent capabilities.
In 1ts simplest ‘feedforward’ form, a neural network is
a collection of connected activatable units (‘neurons’),
wherein the connections are real value weights. The
network is presented with an activation pattern on its
Input units, for example a set of numbers representing
features of an image to be classified (say the pixels in
an image of a letter M). Activation spreads in forward
direction from the input units to output units through
between layers -(hidden layers) over the weighted
connections. Typically, the activation coming into a unit
from other units is multiplied by the weights on the
links over which 1t spreads only in forward direction
in the case of feedforward networks (both directions in
the case of recurrent or feedback networks), and then
is added together with other incoming activation. The
result is thresholded (i.e. the unit ‘turns on’ if the
resulting activation is above the units threshold). This

b

_--—F-- —_-—---——h---ﬁ— alls = L J

a 1.0 bw value of U,
X Wi Sigmoid x
X2 Ao J Facti high valge of O
X3 W3 Activations Sumithon eIy~ - — ey mra s wa -
]nput @ ﬂ Owiput 1 008 +o 1" ¢ Wir o
Signals . i
Xa Wa
C Input
Layen(1) Hidden
Atomic ~ Layer (j) Outputk
Number N Layer(k)
\.'{,‘..“ﬂ" VT
Electro- » q' | A o
Negativity '4\ Whj
. LWii .
Resistivity o Adjustable connection

weights
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process is meant to roughly mimic the way in which
activation spreads through the networks of neurons in

the brain.
After activation has spread through a feedforward

network, the resulting activation pattern on the output
units encodes the networks ‘answer’ to the input (e.g.
a classification of the input pattern as the letter M). In
most applications, the network learns a correct mapping
between input and output patterns via a learning
algorithm. Typically the weights are inittially set to small
random values. Then a set of training 1nputs is presented
sequentially to the network. In the back propagation
learning procedure, after each input has propagated
through the network weights are adjusted to reduce the
difference between the networks output and the correct
output. Each iteration is called a training cycle, and a
complete pass of training cycles through the set of
training inputs is called a ‘training epoch’. This type
of procedure is known as ‘supervised learning’, since
a teacher supervises the learning by providing correct
output values to guide the learning process. In contrast,
in ‘unsupervised learning’ there is no teacher, and the
learning system must learn on its own using less detailed
environmental feedback on its performance.

The study of geometrical structure of an atom is
essential, particularly in the branch of material science,
solid state physics and electronics. It is very difficult
to find a correct mathematical model for the crystal
structure of an element 1n the periodic table. At present
we know most of the parameters of elements up to
AN 109. Discoveries of new elements are very slow
owing to very small life time (few micro seconds) of
higher atomic number elements. It has been hypothesized
that elements up to atomic number 120 could exist
(even if the life time is about pico second). Keeping
this in mind we made an attempt to predict the crystal
class of the elements up to atomic number 120, which
in simulation is feasible and could yield meaningful
results. Here we have used NN for two separate clas-
sification of crystals:

The first method involves the classification of the
whole periodic table by training the network with data
of elements from AN 1 to 84 into eight crystal classes,
namely hexagonal close-packed (hcp), body-centered
cubic (bcc), face-centered cubic (fcc), rhombus, diamond,
cubic, complex, and hex (=hex + tetra).

In the second type, classification is based on the
premise that ‘the crystal structures of many materials
of commercial importance are relatively simple and that
they are either simple cubic (sc¢) or face-centered cubic
(fcc) or body-centered cubic (bcc)’, and for this type
of classification reciprocal lattice technique® is employed.

An i1deal crystal 1s composed of atoms arranged on
a lattice defined by three fundamental translation vectors
a, b, ¢ such that an atom in its arrangement looks the
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same in every respect when viewed from any other
point r as when viewed from a point given by

r=r+ua+vb+wec, (3)

where u, v, and w are arbitrary integers. The set of
points r specified by equation (3) for all values of the
integers u, v, and w defines a lattice. A lattice is a
mathematical abstraction: the crystal structure is formed
only when a basis of atoms is attached identically to
each lattice point, and is given by

lattice + basis = crystal structure.

Many elements occur in several crystal structures and
undergo transformation from one to the other with
varying temperatures and with pressure. Sometimes two
structures coexist at the same temperature, although one
may be stable. Sometimes the difference in the free
energies of certain structures may be very small and
thus it may not be possible to calculate these differences
theoretically, For classification we have referred the
compilation by Wyckoff’.

For the computer implementation our main objective
was to make the neural network classify a given input
(crystal structure of an element in the periodic table)
as follows: Neural network can predict and classify, and
the classification i1s based on training. Thus effective
training ensures that the NN output is accurate and
acceptable. There 1s no general rule or particular reason
for the choice of number of physical parameters at the
input of a NN. When an element exists in nature, its
physical, chemical, and electrical parameters are studied
and determined. For the present work we were able to
associate the following physical parameters with each
element, 1.e. atomic number, electro-negativity, Debye
temperature, transition temperature (process-vaporization:
liquid to gaseous), conversion energy, lattice parameters
(a and ¢), density, atomic concentration of the element
(in 10*® m™), nearest neighborhood, energy required to
form separated neutral atoms from the solid at 0 K 1n
terms of electron-volt per atom, kcal per mol, energy
to remove one electron, energy to remove two electrons,
bulk modulus, compressibility, conductivity, and resis-
tance. (all in SI units)*'?. We extended this to relate
to the unknown element from AN to 120. Even though
compressibility-bulk modulus, conductivity-resistance are
inverse of each other, the numerical values associated
with each of them were different. NN showed sensitivity
to numerical values, and was observed to be nonlinear
in nature. Thus reciprocal parameters could exhibit in
nature and showed nonrepeated responses in NN.

Training is done with data whose output is known.
This training set is to be validated to ensure that the
neural network has been subjected to the entire spectrum
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of choice of inputs. This can be done if further inputs,
whose outputs are known, are given at the input to
check the effectiveness by training. The following steps
give the computer implementation.

(1) Group the elements from atomic number (AN) 1 to
84 1nto eight classes (hexagonal close-packed (hcp),
body-centered cubic (bcc), tace-centered cubic (fcc),
rhombus, diamond, cubic, complex, and hex
(= hex + tetra))®’.
(i1) For each class (say hcp, which has twenty-
four elements) calculate the average (x) and standard
deviation (o).
(i1i) Calculate x £ /3 for each (eighteen parameters) of
them.
(iv) For each class (say hcp), each parameter values are
normalized between O and 1. Step (i1) and (ii) are
repeated for other seven classes.
(v) The above- values are encoded as in max-—-min—-max
pattern with output features*®.
(vi) This 1s used to train the neural network for 2000
iterations.
(vit) For validating the training, we fed the input datas
from AN 86 to AN-95 as in step (v) without output
features and we achieved 100% accuracy in classification.
This trained and validated network was then used to
classify data, the output for which was not known.
(vin) To predict the crystal structure of elements from
AN 96 to 120, we took the overall average (x'), and
standard deviation (¢”) of all the known elements and
followed steps (i1), (iii), (iv) and (v) without any output
at the input of the NN. |
(ix) The process was repeated all over by first training
the neural network for 5000 and then 10000 iterations,
and then we studied the behaviour of the normalized
system error (NSE) as a function of number of hidden
layers (I to 5), and number of units in a hidden layer
(1 to 10). We got best accuracy for single hidden layer,
and in that three nodes. - |

Experimentally we tound that pertormance of the NN
was highly dependent on traintng. Neural network was
trained (AN 1-84) and validated (AN 86-93) from AN 1
to 95 without any error. Here we have avoided AN 9
and AN 85 as it has already been confirmed that crystal
structure for these 1s non-determinable, even though
these two elements exist physically’. Based on the
validation, we predicted the crystal structure from AN
96 to 120, Figure 2 and Table 1 show the NN prediction
and evaluation scores respectively with the following
remarks. |

(1) AN 109, 110, and 11] belong to the column class
of noble (Cu, Ag, Au) and platinum {(Pd and Pt) metals
and Rh superconductor at low temperature'. Since all

iy, 1 ® B sl e — hay i, e mlicheld . ulr
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the known elements are fcc, the prediction of the elements
with AN 109, 110, and 111 is compatible.

(i) The last column elements (noble gases) are fcc. The
neural network prediction of the same column AN 118
belong to fcc.

NN 1is extensively used for prediction. Even if we
know the correct mathematical relationship for a pattern
problem, we can test its validity using a number of
tools. In the following section we have used NN for
the classification of crystals using reciprocal lattice tech-
nique (X-ray diffraction), as we know most of the
elements exist in cubic crystal structure.

Basically there are three different crystal structures,
namely sc, fcc, and bce. To find the above structure,
reciprocal lattice technique is powerful. We have also
classified the given crystal as sc or bcc or fcc. The
data values are obtained from Scherrer method®’. In this
case, reciprocal lattice vectors are taken, based on the
following analogy:

Every crystal structure has two lattices associated with
1t; the crystal lattice, and the reciprocal lattice. Any
vector of the form

G=hA+kB+IC 3)

(h, k, and | are integers or zeros) is called a reciprocal
lattice vector, where

A=2I1 (bxc)abxec
B =2I1 (¢ xa)/a.b xc. (4)
C=2Il (axh)abxce

If a, b, and ¢ are primitive lattice vectors of the crystal
lattice, then A, B, and C are primitive vectors of the
reciprocal lattice. The reciprocal lattice is a lattice in
the associated Fourier space. Every position in Fourier
space may have a meaning, but there is a special
importance to the points defined by the set of Gs. Any
function invariant under a lattice translation can be
expanded in a Fourier series ot the form

n(ry=n)Y exp(i.G.n. (5)

j=1
In Debye Scherrer method

4a’ sin®’ 0, sin @ A’
=A* or = \
N N 44

where a/N is lattice constant A the wavelength of the
monochromatic X-ray used, and € the diffraction angle
from the respective reference line. For training, & values
have been taken from the standard refercnce muanual
and for prediction, € values have been taken from the
Laboratory, and we are able to classity without any error
for all classes. In this method we have caleulated
N/sin* 0,
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For sc. N=1, 2. 3. 4, 5. 6, 8 9,
for fce. N=3. 4, 8 11, 12, 16, 19,
and for bece. N=2. 4, 6, 8, 10, 12, 14, 15, -

Further. we took three crystal structures: sc, fce, and
bce.

In the following section we have studied the depen-
dency of the NN on different confidence intervals. The
term ‘confidence interval’ has an intuitive meaning as
well as a technical meaning. It is natural to expect it
to mean ‘an interval in which one may be confident
that a parameter lies’. Therefore if the means of our
target problems are plotted, they will form a frequency
distribution which will be a close approximation to a
normal probability curve: thus a plot of the standard
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error of the means (N) and sample size 1s shown In
Figure 3a. We have to select the confidence coefti-
ctent intervals as follows:

Let the means (1« s) and standard deviation or standard
error (0s) be taken from an approximately normal
distribution statistic. We can expect to find an actual
sample lying in the interval g *os, wt20s, ut30s
about 68 27%, 95.45%. and 99.73% of the time respec-
tively. Figure 3 b illustrates how the width of confidence
interval varies with confidence coetficient for any given
sample result.

Many confidence intervals can be discussed in terms
of one-dimensional statistics, T(X). which depends upon
a vector of observations X. If 7T(X) is a continuous
random variabie, given probabilities «, and «,, 1t is
possible to find T (6) and T(8#) such that

i

5 6 7

B C| N
rob | diad cabic
13| 14 15§
Al | Si P
fee | diad cox

76 78 8
Ir Pt Au Hg Bi Pu
icp fcc fcc Jee mb fcc rob ﬂlH fcc

39 | 104 105 109 (110 {114 (102 [§03 ) €24 ) 115 |16
Ac | Rf | Ha % t [Uun
fcc bec | sc s¢c Yec Wee | fec |fee |fee | feel fee } fee } fee]l  fec

100 lﬂl
Blﬂ (‘f E.t Fm
d bec | bec

hcp: hexagonal close pnr:l ing ,
: diad: diamond '

cubn: cudic
rob: rkombus,

Figure 2. Neurai network prediction of crystal class elements in a periodic table.
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PIT(X) < TI(O) 10 ] = a,, (0)
and

PIT(X)>T,0)10,])=a, (7)

Confidence limits for €-based statistic T are shown
in Figure 3c¢. For every particular value of 0 the
probability that T lies between T(0)=T,0) is
|l —a, —a,. The basic idea of confidence intervals is to
express confidence 1-«, —a, that the point (0, T) lies
in the confidence belt after T has been observed. Fol-
lowing are the results obtained on dependency of NN
In a confidence interval and hidden layers.

(1) Normalized system error (NSE) decreases in all con-
fidence intervals from xxo¢/3 to x+ 30, as shown in
Figure 4 a.

(ii) At x*o0/2 and x* o confidence intervals NSE is

minimum for 2000 iterations and the best fit line is
given by Y=0.00435912 In(X) + 0.0136809 (Figure 4 b).

Table 1. Known and neural network output of crystal class in a
periodic table
Crystal structure
Atomic ——
number Element KI NNP
85 Al Uk NC
86 Rn fce fce
87 Fr bce | bce
88 Ra hce bec
g9 Ac fee fcc
20 Th fce fee
01 Pa hex hex
02 U . Complex Complex
93 Np Complex Complex
94 Pu Complex Complex
05 Am hex . hex
96 Cm Uk hce
o7 Bk Uk bce
08 Cf Uk bce
A Es Uk bce
100 Fm Uk bce
101 Md Uk bce
102 No Uk bee
103 Lr Uk bce
104 Rf Uk bce
105 Ha Uk SC
[06 Unh Uk SC
107 Ns Uk §C
1 0¥ Hs Uk S¢
09 Mi Uk fcc
110 Uun Uk fce
i1 Uk fce
112 Uk fee
113 Uk {ce
114 Uk fce
115 Uk fce
116 Uk fee
117 Uk fee
118 Uk fce
119 Uk fce
120 Uk fcc

Kl, Known information; Uk, unknown; NNP, neural network prediction;
NC, not considered; bee, body-centered cubic; fee, face-centered cubic:
gc, simple cubic.
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(111) As the number of units in a hidden layer is increased,
from 1 to 10, the NSE decreases. The best fit line is
given by ¥=-0.027989 X+ 0.8964 (Figure 4 ¢).

(iv) As we increase the number of hidden layers, the
NSE increases and its best fit line is: Y=0.105234
X +0.625 (Figure 4 d).

Thus study of crystal structure and its class is based
on modern algebra, particularly the group theory. We
have. attempted to classify crystals in a periodic table
using a new tool: neural networks. We have shown the
advancement and capability of neural networks in pre-
dicting the crystal class of high atomic number elements
which are yet to be discovered, and perhaps might take
decades before they are discovered. It would be inte-
resting to extend this technique to solve other problems
as well in physics or related fields.

In the present investigation we have taken eighteen
physical parameters to determine the crystal structure
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using NN. To find the optimum number and the actual
parameters sufficient for classification, there is a need
to examine the performance of the network for different
choices of the parameters included in the input vector.
This question is open for future investigations.
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