RESEARCH NEWS

to degrade exogenous p53, although this
effect was not seen in cells lacking Mdm?2.
Treatment of human cells expressing
endogenous wild type p53 and Mdm2
with this proteasome inhibitor resulted in
enhanced stability of the endogenous p53.
An inhibition of Mdm2-targetted p53
degradation could also be seen following
cotransfection of these cells with mdm2
and p53. These results strongly indicate
that Mdm?2 targets p53 for degradation
through the proteasome, and suggests that
Mdm?2 is involved in the normal regula-
tion of p53 stability.

. Michael, H. G., Kubutat et al, Nature,
1997, 387, 299-303.

2. Donchower et al., Nature, 1992, 356, 215-
222,

3. Oren, M., Behring Inst. Mitt,, 1996, 97, 32-59.
4. Oren, M. et al., Mol. Cell Biol, 1981, 1,
101-110.

5. Fritsche, M.
307-318.

6. Vogelstein, B. et al., Cell, 1992, 70, 523-

'526.

7. Cahilly-synder, L. et al., Soma Cell Mol
Gen., 1987, 13, 225-72-4.

8. Oliner, J. D. et al., Nature, 1992, 358,
80-83.

ef al., Oncogene, 1993, 8,

9. Wux et al., Genes Dev., 1993, 7, 1126~
1132.

10. Momand, J. et al.,, Cell, 1992, 69, 1237-
1242.

11. Olsen, D. C. et al., Oncogene, 1993, 8,
2333-2360. -

12. Montes de Oca Luna, R., Nature, 1995,
378, 203-206.

13. Ygal Haupt er al., Nature, 1997, 387, 286—
299,

V. K. Nampoothiri is in the P.G. Depart-
ment of Zoology and Research Centre,
Sanatana Dharma College, Alappuzha
688 003, India.

Why does object technology hasten slowly?*

Rajendra K. Bera

The entire evolution in programming
languages and programming strategies
seems to point to one major effort—how
to cordon the scope of data and functions
so that they can be accessed, changed
and used without causing unintentional
side-effects. In short, software engineering
is progressively trying to enforce, among
software developers, the discipline that
mathematicians bring naturally to their
tasks while solving problems. Object tech-
nology {(OT) is the currently fashionable
effort in this direction. At its heart is the
requirement that the software developer be
able to sce (and invent) concepts and pat-
terns and translate them into user-defined
data types, better known in the literature
as abstract data types (ADTs), in terms of
which one can effectively describe a prob-
lem and its solution.

All programming languages form a
branch of mathematics. All requircments
analysis is essentially an excrcise in
mathematical modelling. Al software
design is a further dctailed elaboration
of that analysis with a vicw to developing
an implementation strategy;, and coding
is the step which spells out exactly how
the design will be exccuted. Intellectual
controf at every step is the key to software
development. Analysis, design and
coding, although occurring at different
levels of abstraction, must ideally be
equivalent in a mathematical sense.

*The views expressed are those of the author.

Mathematics has developed over many
centuries, has a rich tradition, and at any
given time it is served by a good number
of extraordinarily talented people devoted
to furthering the subject. Mathematicians
work without text-editors, debuggers,
case-tools and so on. They do not
generally commit errors of syntax, type
mismatch or make a religion out of re-
usability even though a very high per-
centage of their work is in reusable form
{theorems, lemmas, methods, data types,
etc.). They conceptualize, create abstract
data types, encapsulate, inherit and reuse.
They go about their job quietly, methodi-
cally, carefully, rigorously, painstakingly,
and above all, knowledgeably. After com-
pleting a piece of work, they take the
time to sit back, rcflect and make it
elegant. They provide a polished docu-
ment at the end of their endeavours stating
what they have done so that others may
review, criticize and finally use. Mathe-
maticians generally avoid self-inflicied
complexity in their work by being very
systematic. They usually focus on resoly-
ing domain knowledge complexity. Indeed
they already practise what practitioners
of OT hope to achicve in the future. So
why are software developers so different
Srom mathematicians?

The reasons

There are perhaps several reasons. First
is the multidisciplinary nature ol the
field = hardware, software and applica-

CURRENT SCIENCE, VOL. 75, NO. 9, l0 NOVEMBER 1998

OPINION

tions. They involve practitioners from
very different academic fields with dif-
ferent traditions, training, prejudices and
goals. Indeed, many managers in the soft-
ware industry have none or very little
formal training in software engineering.
Consequently, there are problems of
depth, focus, traditions, customs, role defi-
nitions, etc., all of which remain rather
hazy today. What is really needed is an
interdisciplinary approach. That is, soft-
ware practitioners must acquire a broad
range of skills that at least span the core
arcas of hardware, software and applica-
tions so as to develop a wider perspective,
In particular, professional grade software
developers must be trained in operating
system design, complicr design, program-
ming language design, functional analysis,
logic and theoretical physics. Such a train-
ing will provide them with the competence
to understand and deal with both domain
knowledge as well as software develop-
ment complexities at appropriaie Jevels
of abstraction.

Sccond is the pretence that software
enginecring can largely munage without
a great deal of training in mathematics.
It simply cannot in the fuwre.

Third is the poor repertoire of symbols
in software engincering. Much of human
civilization’s efforts in building know-
fedge has gone into devising expressive
symbols to convey concepts and relatons
among them so that knowledge generation
and its transmission can be handled with

877

OPINION

ease. The mathematicians, in particular,
have evolved it to a fine art. To under-
stand its implication one has to go no
further than imagine doing arithmetic in
Roman numcrals rather than in Arabic.
Yet software enginecring is still strug-
gling, even at the programming language
level, to evolve a rich, concise and an
expressive array of symbols, even though
many of the symbols it needs can be
readily borrowed from mathematics. A
major constraint in this evolution has
been our anachronistic attachment to the
old ‘gwerty” keyboard. While any modem
DTP software implements the full range
of mathematical symbols and many others,
programming languages do not! We need
a new keyboard and a whole bunch of
new symbols if program verification is
to become a reality.

Fourth is the deliberate desire to keep
programming languages small in the belief
that it will encourage the masses to leam
programming. However, the same masses
learn their mother tongue by memorizing
a few thousand words of vocabulary and
pick up the nuances of its semantics
without any fuss. Basically, people leam
when they have a need to leam, rarely
because it is easy. Today software engi-
neering is the backbone of the know-
ledge-based industrial sector. It is no
longer a profession meant to be practised
by the masses but by the specialists and
the highly trained. To cater to their needs

programming languages have to be ex- .

tensively extended and supported through
function and class libraries.

Fifth is the dubious practice of teaching
people programming languages in a crash
course lasting a few days or weeks and
then putting them on the job. In contrast,
to communicate effectively in a new natu-
ral language we go through years of
training! Programming languages need to
be taught with at [east the same care and
thoroughness as is done in natural lan-
guages, and preferably, as in mathematics.
Students need to be exposed to and study
programs written by master programmers.

Sixth, and the most serious, is the lack
of intellectual giants in the field. There
are no Newtons, Einsteins, Poincarés and
so on. The field is too young—roughly
45 years old and the majority of its
practitioners even younger — which may
be a contributing factor. (Incidentally,
quantum mechanics made remarkable pro-
gress ia its first 45 years of existence to
become the crown jewel of theoretical

878

physics because of people like Planck,
Bohr and Heisenberg!) But the fact that
top-flight mathematicians do not feel at-
tracted to contribute to the development
of programming languages and program-
ming techniques is a matter of grave
concem. They are needed to bring true
professionalism to software engineering
and to provide schools of thought for
the younger generations. Their absence
has led to a disturbing trend where soft-
ware engineers continue to create new,
and sometimes, personalized, jargon
which is non-standard, confusing and
occasionaily meaningless. And often,
techniques proven and routine in other
branches of knowledge are presented
as radical innovations in software engi-
neering!,

OT is a major example of this trend.
To quote Meyer (the designer of the
object-oriented language FEiffel),

... if ObjectSpeak confuses you, do
not despair: you are not alone. People
who have been practising object tech-
nology for years feel just as dizzy,
and in fact some of those who invented
the concepts do not necessarily fare
much better’.

Another distinguished author, Page-Jones®
begins his book by observing that the
term object oriented is intrinsically mean-
ingless. The dictionary meaning of object
is: ‘A thing presented to or capable of
being presented to the senscs’. The word
oriented means ‘directed toward’. Object-
oriented usually appears as an adjective.
Thus he concludes,

‘Object-oriented: Directed toward just
about anything you can think of’

And,

‘No wonder the software industry has
failed to alight upon an agreeable defi-
nition of “object-oriented”. And no
wonder that this lack of clarity has
allowed any peddler of softwares to
claim that his shrink-wrapped miracles
are “object-oriented”.’

Such confusion and skepticism is un-
usual for a field that claims to provide
a better paradigm for software develop-
ment than in the past, emphasizes the
supreme role of concepts and abstractions
and when for its terminology, notations
and symbols, it can readily draw upon
the storchouse of mathematics. Surely,
the central theme in OT is

The practice of mathematical model-
ling; if necessary, by inventing new
data types along the way.

This is a more demanding task than prac-
tising classical mathematical modeiling
where one generally assumes that one will
work with available and well-understood
data types. Inventing new data types is
a demanding intellectual activity. Not
many of us would have invented complex
numbers, vectors, matrices, etc. Data types
deal with operands and opecrators. The
so-called class in OT is a data type, an
object is a variable of a given data type.
In OT, the data type integer and the
integer variable k would be known, res-
pectively, as class integer, and object k.
And to sound exotic, one would also say
that k is an instantiation of class integer!
Cne also calls a function a method (and
what we usually understand by a method
is called a methodology) or a service,
and a function call is a message. In
essence, a class is nothing but a list of
operands and a list of operators mean-
ingful to those operands, syntactically ex-
pressed as a unit called a data type.

The concepts behind encapsulation, in-
heritance, reusability, etc. are neither new
to mathematicians nor to procedural pro-
grammers, but they seem to have been
recently rediscovered by the OT commu-
nity. These concepts are often understood
intuitively and certainly well practised by
the mathematicians (since at least the past
two thousand years; recall that Euclid’s
book on geometry, written two thousand
years ago is still used practically in its
original form) and professional program-
mers and in just about any established
profession or branch of knowledge-
because these are the pillars around which
all knowledge is built. The subroutine,
invented in the 1940s, introduced encap-
sulation of code into procedural modules;
inner blocks in C codes inherit the vari-
ables of the outer blocks; and everybody
reuses function libraries.

Till it is firmly accepied that serious
OT requires high level mathematics and
that today’s average programmer does
not have the requisitc mathematical train-
ing to practise OT, we will continue to
wonder and debate why OT is not taking
off®. Vlissides®, I think, neatly sums up
the present situation,

‘Yes, object technology is still emer-

ging. I's not clear how many people
who think they’re doing object-oricnted

CURRENT SCIENCE, VOL. 75, NO. 9, 10 NOVEMBER 1998

OPINION

programming actually are doing object-
oriented programming. I think it’s a

small percentage, so the signal-to-noise

ratio is fairly low’.
And,

‘It just basn’t become a productive
medium for the majority of program-
mers and designers out there. People
have a lot of mechanism thrown at
them, but they can’t put that mechanism
to use in systems that make good on
the promise of object technology: that
is, to gain reusability, flexibility, ex-
tensibility and elegance in their soft-
ware.’

All this will change if software developers
are trained in mathematical modelling.

Seamless software development

Traditionally, software engineers have
looked upon software development pro-
jects as consisting of the following steps:

e cliciting user requirements;

¢ analysing those requirements;

s designing the software architecture;

* coding the software for implementation.

Essentially analysis, design and imple-
mentation deal with three different pers-
pectives of a given problem viewed from
an hierarchy of conceptual levels. Hier-
archies localize decisions and correctness
demonstrations. That is how we conquer
and control complexity and maintain in-
tellectual manageability. Well-conceived
hierarchies allow the trained mind to jump
from one level of hierarchy to another
with ease. However, what con{p]icates
the software developer’s task enormously
is the fact that different terminologies,
notations, symbols, etc., are used in the
different steps, which, in large projects,
force developers to compartmentalize their
thought processes, severely constrains
their ability to traverse across hierarchies
and virtually mandates that the develop-
ment team deal with the steps one at a
time. The result is an cnormous load of
documentation created at each step and
the frequent lack of compatibility among
these documents. Morcover, post-fixing
an error in a step is a major and often
nerve-racking exercise. Consequently,
band-aid fixes are common, and the soft-
ware and its related documentation slowly
and surcly degencrate to unmanageahle
levels from both intellectual and deve-

lopmental points of view. Essentially soft-
ware construction is being handled in the
same way as one would handle the con-
struction of a building!

On the other hand, when applied mathe-
maticians deal wjth a user problem they
make a mathematical model to capture
the essence of the problem, decide upon
the methods to solve the problem, and
solve the problem. They do all this seam-
lessly by the simple expedient of using
the same terminologies, notations and
symbols throughout. Therefore they are
able to produce a single document from
problem definition to problem solution
and go back-and-forth in their steps with
far greater ease and intellectual control
than is currently possible by the software
developers. Mathematicians long ago rea-
lized and exploited the fact that their
products are not physical products but
abstract constructs of the mind. Softwarc
developers have yet to realize this in any
real sense.

I believe that the problem of symbology
is the biggest hurdle in the path to pro-
ducing quality software products. If this
problem is addressed with vigour, soft-
ware development and verification would
eventually become much more simple.
Indeed one would then be practising
mathematics. And, indeed, one would no
longer need ISO certification to assert
the quality of one’s software product — it
would be verifiable to mathematical
standards.

The OT myth

A general myth in software engineering
is that the unit of programming in pro-
cedural programming is the function and
in object-oriented programming it is the
class; that C programmers concentrate on
writing functions and C** programmers
concentrate on crealing their own user-
defined types, called classes; that proce-
dural programmcrs concentrate on the
verbs and the object-oriented program-
mers concentrate on the nouns. This is
really perplexing. OT is not about abjects
but about abstraction. When Newton dis-
covered the law of pravitation, he was
not concerned about the apple but the
fulling of any object in a force field.
When engineers design a control system
they do pot concentrate on the physical
objects constituting the system but on
their abstract representation, the Laplice
transform of their dynamies, and the

CURRENT SCIENCE, VOL. 75, NO. 9, 0 NOVEMBER 1998

manipulation of polynomials. Naively
concentrating on the real-world nouns
would not have got either Newton or

.control system designers very far,

In all programming, the macro unit of
data is the structure (or record) and the
macro unit of action is the function or
an operation on data. Together they form
a class of operators and operands — mostly
implicitly in procedural programming and
mostly explicitly in objected-oriented pro-
gramming. Unchanging data by itself is
not interesting (unless they are universal
constants such as the speed of light, the
value of m, etc.) but transformation of
data is. Niklaus Wirth’s aphorism ‘Algo-
rithms + Data Structure = Programs® ess-
entially describes all software. Data is
transformed by action, that is, functions.
Functions are where all the interesting
action is! Classes are merely a good
synthetic mecans of clubbing data struc-
tures and related actions together, spe-
cially if they can be used in a well-defined
context. Data structures do not inspire
action, interesting actions (specially co-
ordinated actions) inspire data structures.
A ‘class is interesting only if it contains
functions that do interesting things, not
because it contains data. The more ver-
satile or generic the actions, the more

" the likelihood of its supporting a variety

of data structures. That is why templates
in C*™ are a more powerful syntactical
unit than functions and classes®. In tem-
plates, the unquestionable focus is on
generic action. It is action which holds
data together and gives meaning to it.

Once the programmer has selected and
created his/her data types, hefshe reverts
to procedural programming because that
is how all mathematics is done. The vast
majority of object-oriented programming
is functional decomposition and proce-
dural programming. How e¢lsc arc its
methods programmed? And why will
classes be important but for the methods
they contain?

If the science and art ol programming
is to progress, the standard data types
availuble in a programming language
should be expanded greatly to include at
least complex, vector, matrix, set, strng,
list, et Their implementaton should
really be the task of compiler writers and
not application programmers. [believe
that software enginearing will come of
age when a programmer will not have
to struggle to implement what a mathe-
matician tikes for granted when solving

OPINION

a problem. When all the data types that
a programmer necds become available in
class librarics, then the distinction
between a proccdural program and an
object-oriented one will vanish.

The OT hype

Though OT has been much talked and
written about since the 1980s, the sofiware
community remains polarized into two
camps: the cynical. sniggenng object-
oriented reactionaries claiming that’
‘Nothing significant in software has hap-
pened since the sixties!” and “All this
object-oriented malarkey is just the same
old stuff that we’ve always done, but
with a few fancy name changes’; and
the die-hard, hot blooded object-oriented
revolutionaries claiming that ‘Anything
known before 1980 isn't worth knowing!’

Most of the claimed success stories in
OT are anccdotal without any clear evi-
dence that aiternative programming styles
(for example, structured programming)
adopted by competent software developers
would not have done an equally good or
an even better job. Furthermore, the OT
literature does create the impression that
procedural programming is practised by
the naive if not the moron and doing
object-oriented programming somehow
makes you clever. An example® from one
of the gurus of OT,

‘Don’t be quick to assume that your
system falls in a calegory where QOA
[object-oriented analysis] is not helpful.
For example, consider an aircraft simu-
lation system. A traditional approach
would be to build a single, gigantic
event-driven simulation (a big algo-
rithm, not well-partitioned). Yet an
object-oriented approach partitions the
system into paralle] subsystems (elec-

trical, mechanical, hydraulic and the
like): each subsystem follows a similar
pattern: and each subsystem has many
Class-&-Objects.”

Interestingly. flight software developers,
without using OT, have always worked
at the cutting edge of software technology
(real-time, fault-tolerant, distributed, mis-
sion critical), contributed enormously to
its growth and development, and have
helped put a man on the moon! That
such people cannot even do_a decent job
of partitioning a software which an
object-oriented approach (not a domain
expert!) will routinely do is truly incred-
ible.

We know that doing mathematics does
not make people clever, clever people do
mathematics and they try to be objective
(and not object-oriented!y in the way they
attack a problem. Similarly, only clever
people do serious software development.
Object technology would be far more
comprehensible and better served if the
jargon and the hype were removed and
the equivalences between an object-
oriented approach and a procedural
approach were clearly brought out.

It is not object technology which is
the great breakthrough in software engi-
neering as some claim, but the invention
of programming languages which allow
professional programmers to define their
own data types safely and conveniently
and which lets them select the style of
programming suited to the problem at
hand. For professional programmers the
biggest event in recent times, in my view,
is the creation of C** by Bjame Strous-
trup. In some future version of C**, 1 am
sure, many are waiting to see it extended
to allow user-defined operator symbols
and user-specified associativity and prece-

dence rules for operators. It will then
allow programmers to deal directly with
mathematical models much more effec-
tively than is possible now.

I. Although F. P. Brooks, Jr., in his book
The Mythical Man-month (Addison-Wesley
Pub. Co., Mass., 1982, p. 14) makes a
similar comment in the context of why
software projects go awry, the observation
is generally true for all of software engi-
neering.

2. Meyer, B., Object Success, Prentice Hall,
London, 1995, p. L.

3. Page-Jones, M., What Every Programmer
Showld Know About Qbject-Oriented
Design, Dorset House Publishing, New
York, 1995, pp. 1-2.

4. An ACM convened Industry Advisory Board
sponsored by IBM’s Object Strategy and
Implementation Group met in 1995 to dis-
cuss future applications of object technology
in industrial settings. In particular, they
addressed the question, ‘Is object technology
still emerging, and why is it taking so long
to gain acceptance?’ The discussions were
reported in Comnunications of the ACM,
October, 1993.

S. Communications of the ACM, October, 1995,
p. 39.

6. We are essentially seeking to increase the
scope of polymorphism of a method so that
a method is meaningful over as large a set
of classes as possible.

7. The quotes are from Page-Jones, M., What
Every Programmer Should Know About
Object-Oriented Design, Dorset House Pub-
lishing, New York, 1995, pp. 55-56.

8. Coad, P. and Yourdon, E., Object-Oriented
Analysis, Yourdon Press, New Jersey, 1991,
p. 32.

Rajendra K. Bera is a Consulling Soft-
ware Specialist in IBM Global Services
India Pvt Ltd, Golden Enclave, Airport
Road, Bangalore 560 017, India.

8O

CURRENT SCIENCE, VOL. 75, NO. 9, 10 NOVEMBER 1998

