A note on uranium mineralization in the Neoproterozoic calcitic phosphorite from Ramtirth, Bhima basin, Gulbarga district, Karnataka

Bhima basin, a Neoproterozoic Purana basin, with an area of 5000 sq km, mostly in northern Karnataka, gains importance in view of uranium potentiality, due to the discovery of significant radioactive zones at Uknal and Gogi along the Gogi–Kurlagere fault, on the southern margin of Bhima basin.

This note presents the first account of uranium mineralization at Ramtirth (N 16°58'30" lat. : E 77°11'00" long.) in brecciated calcitic phosphorite along the Wadi–Ramtirth fault. Ramtirth is located 30 km northeast of Yadgir in Gulbarga district, Karnataka and is approachable by a jeepable road from Yadgir. Stratigraphically, the mineralization is confined to the Lower Bhima Group of sediments.

The sediments of the Bhima basin overlie the early Precambrian granite-greenstone terrain of the Eastern Dharwar Craton in the south and underlie the late Cretaceous–Paleocene Deccan basalts in the north. They are composed mainly of limestone, shale, and conglomerate.

The Ramtirth area occupies the southern margin of the Bhima basin (Figure 1). Near Ramtirth, limestone of Lower Bhima Group (Shahabad Formation), underlain by ferruginous/calcareous shales is disrupted and brecciated along the faulted contact. The trend of the host rock is N140° to N165°, dipping 35° to 45° due east (Figure 1).

Uranium mineralization occurs in the calcitic phosphorite intimately associated with the brecciated limestone along the faulted contact. Due to faulting, the host rock is crushed and occurs as scree on the hill slope. The mineralization is traced intermittently over a strike length of 250 m and width of 10 m. The host rock is very fine grained and contains mainly collophane (with some admixed quartz as impurity) and lesser micrite (calcite) and chert with intermittent bands rich in ore minerals. The ore minerals are mainly of limonite (spread as tiny rounded grains), anatase as small patches, and pyrolusite. Solid state nuclear track detection (SSNTD), transmitted and reflected light microscopic studies of the mineralized rock have demonstrated that the main source of uranium (in adsorbed form) is collophane, with minor contribution from that associated with limonite and chlorite. Chemical analysis of the mineralized rock (n = 11) is as follows: CaO: 28.94 – 40.28 wt. % \(\bar{x} = 35.74, \sigma = 5.35 \); SiO₂: 14.98 – 30.81 wt. % \(\bar{x} = 22.24, \sigma = 5.63 \); Al₂O₃: 2.91 – 6.39 wt. % \(\bar{x} = 3.59, \sigma = 1.49 \) and P₂O₅: 18.44 – 28.73 wt. % \(\bar{x} = 23.98 \).

Figure 1. Geological map of Ramtirth area, Gulbarga district, Karnataka.
$\sigma = 3.08$. Its uranium content 0.007 to 0.086% ($\bar{c} = 0.03, \sigma_c = 0.029$) has positive correlation ($r = +0.3652$) with P$_2$O$_5$.

Based on the field and petrographic aspects given above, the uranium mineralization is both lithologically and structurally controlled. In the light of this discovery and the earlier reported uranium mineralization at U'tal and Gogi, the Bhima basin, especially the faulted and unconformity contact between the fertile basement granite and its overlying limestone, warrants detailed radiometric checking.

1. Achar, K. K., Pandit, S. A., Natarajan, V., Mary K. Kumar and Dwivedy, K. K., Paper presented in the IAEA TCM on Recent Developments in Uranium Resources, Production and Demand, 10–13 June, Vienna, Austria, 1997.

ACKNOWLEDGEMENTS. We thank Shri B. M. Swarnkar, Regional Director, AMD, SR and Dr. R. Dhanaraju, Dy. Regional Director, for their valuable suggestions.

U. P. SHARMA
R. GAJAPATHI RAO
S. A. PANDIT
MARY K. KUMAR

Atomic Minerals Division,
Bangalore 560 072, India

INDIAN INSTITUTE OF SCIENCE
BANGALORE 560 012

Applications are invited from Indian nationals preferably below the age of 35 years, for a Faculty Position at the level of Assistant Professor in the Astronomy and Astrophysics Programme at the Department of Physics. The applicants should have (i) Ph D degree and (ii) three years (relaxable in exceptional cases) of post-doctoral experience in the broad areas of theoretical or observational astrophysics. In addition to having a small theoretical astrophysics group at this Institute, the Astronomy and Astrophysics Programme coordinates a major graduate student training programme in collaboration with several astrophysics groups around the country. The total emoluments at the minimum of the scale of Rs 3700-125-4950-150-5700 (the scale is under upward revision) are around Rs 1,32,000/- per annum. Candidates are requested to send their curriculum vitae with a list of publications, important reprints, a short description of the research activity they would like to pursue in case they are selected and names of at least three referees with their address including Fax and e-mail address to Prof. S.V. Subramanyam, Chairman, Division of Mathematical and Physical Sciences, Indian Institute of Science, Bangalore 560 012, India within 2 months of this advertisement. The referees may be requested to send their assessment directly to Prof. Subramanyam (e-mail: dcpva@admin.iisc.ernet.in or Fax No. +91-80-3340416). For further information please contact Prof. Chanda Jog (cijog@physics.iisc.ernet.in) or Prof. Arnab Rai Choudhuri (arnab@physics.iisc.ernet.in).

R(I)308-20/98
6 August 1998.

REGISTRAR