The ‘proto-Indian’ population identified in the recent mtDNA studies posit an ancient southeast Asian migration that passed through India

Several independent evidences indicate Africa as the place of origin of modern man. Mitochondrial DNA (mtDNA) studies date the origin of anatomically modern man in Africa approximately around 200,000 years ago, and there is archaeological evidence for migration of modern man from Africa to the rest of the world about 100,000 years ago and the expansion of the non-African population around 65,000 years ago. This expansion and the resultant migrations of modern man to inhabit major parts of the globe is of considerable interest because such an event would have preceded or have been closely associated with the origins of the three major world ethnic groups, the Orientals, the Caucasians and the Africans. Even though very distinct features are associated with each of the three ethnic groups, many intermediate populations have also evolved due to continuous gene flow among the above major groups. Gene flow due to secondary migrations could be expected to have diluted the ethnic features of the original inhabitants during population expansion. In some cases, mtDNA which is a single lineage molecule, could be used to trace the preexistent population, which would have got mixed with later migrants. Identifying the original inhabitants may in turn help in understanding the history of migrations. There have been efforts to trace the actual routes followed by modern man while migrating from west Asia towards east. Geographically, like China, India is also located in the path of west to east migrations of modern man outside Africa. Thus the mtDNA studies of the Indian population are important with respect to global migrations of modern man.

The oldest evidence of Homo in India is the Narmada man, a Homo sapiens fossil dated 0.7 my. There is archaeological evidence for Homo about 600,000 years BP (before present) and for modern man about 40,000 years BP. Linguistic evidence supports the suggestion that neolithic migrations of farmers brought the Dravidian language with oreintals (1, 6, and 28 in Figure 1 of Barnabas et al.3). Our study of the Indian sample for the presence of Ddel10,394AluI10.397 (++) haplotype (unpublished results) supports these observations.

Our RFLP study using the six enzymes had identified the ancient Asian mtDNA type (8–1) which has a common mutation in the Hpol and HincII sites in Indo-European language speakers and a form which can be derived from this type was found in a Dravidian language speaker. Passarino et al.11 have reported the same mtDNA type (8–1) in two individuals. Whereas, another mtDNA type (1–1–2–1–1–1–1) which can be derived from the ancient Asian mtDNA type and found at a higher frequency in the present day Southeast Asians12, has been found only in one individual in the Indian sample1. Thus in the Indians the more ancient mtDNA type (8–1) is found at a higher frequency compared to the derived one (1–1–2–1–1–1–1). This is in contrast to the frequencies of these two types found among the Orientals where the derived one is more frequent. This observation suggests that the latter type would have originated and spread in Orientals who separated from ‘proto-Indians’. Based on this we had also suggested the possibility of a migration from Africa to Asia that passed through the Indian subcontinent. Other studies12 have supported an Asiatic migration through China and our suggestion does not contradict these studies. We would like to mention some recently published evidence that gives credence to this suggestion about an ancient migration. An mtDNA sequence study has pointed out the possibility of the existence of a population in India before the first Caucasian migration reached India. Mountain et al.2 in their study of three Indian caste groups from Karnataka (southern India) suggested that their common ancestor may predate the Eurasian migration.

There is further support from yet another study13 which suggests that there were two distinct migrations towards
east Asia and Oceania; one north of the Himalayas leading to China and Japan, while the other more southern. It is probable that the southern migration towards southeast Asia passed through India and is represented by the Palaeolithic cultural remains of modern man in India. The admixture between the Palaeolithic man and the agricultural migrations is seen in the above-mentioned studies including our own. However these findings do not rule out a more recent Asiatic admixture in the northeastern Indian population. Nevertheless, the mtDNA studies of the Indian population have identified the remnants of an ancient Indian population which would have spread throughout the subcontinent and got mixed with the later migrants. We would like to point out again that the available evidence indicates that the early population would have reached India as part of the first modern man migrations from the west towards the east.


ACKNOWLEDGEMENTS. We thank DST for financial support.

S. Barnabas
C. G. Suresh
Division of Biochemical Sciences,
National Chemical Laboratory,
Pune 410 008, India.

WATER TECHNOLOGY CENTRE
INDIAN AGRICULTURAL RESEARCH INSTITUTE
NEW DELHI 110 012

Applications for the position of Senior Research Fellows are invited under Prof. S. K. Sinha, National Professor and Dr. Renu Khanna-Chopra, National Fellow (ICAR Projects) with a remuneration of Rs 2500/- per month (Fixed/Consolidated) plus HRA with the qualification of M Sc in Plant Physiology/Biochemistry/Botany/Molecular Biology. Research experience in biochemistry is desirable.

The laboratory is involved in work Abiotic Stress Tolerance which include drought and temperature stress. The objectives are to identify traits and molecular markers for stress tolerance. At present some work on the expression of heat shock and water stress response proteins is in progress. There are plans to develop transgenics for over-expression of some genes in stress tolerance.

The Senior Research Fellow will be allowed to register for Ph D at a University other than IARI. The application should reach Dr. Renu Khanna-Chopra, National Fellow, Water Technology Centre, Indian Agricultural Research Institute, New Delhi 110 012 within ten days of the advertisement.