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Nernst expression and Poisson’s equation: Are they

consistent?

V. S. Vaidhivanathan

A paradox exists between the implications of Poisson’s equation and the demands of equilibrium
Nernst expression in physical chemistry. Poisson equation relates the second derivative of electric
potential profile in an inhomogeneous system, to local charge density. Local charge density is a
function of concentrations of various ions, and can be expressed as proportional to concentration
of a specified ion or electrolyte in the bulk homogeneous region, the proportionality coefficient
being an vet unspecified function of position variable. Therefore, Poisson’s equation requires that
the electric potential should be a linear function of concentrations. On the other hand, Nernst
equilibrium expression states that electric potential should be independent of the absolute values
of concentrations and is related to only ratio of concentrations. Since Poisson’s equation and
Boltzmann distributions are fundamentally valid, it is imperative that this inconsistency existing
between these two valid relations of physical chemistry is resolved.

THIS paper is concerned with a fundamental question
existing, in physical chemistry, which requires an an-
swer. Poisson’s equation relates the differentials of the
electric potential profile at a specified location in an
inhomogeneous region, with the charge density at that
location. Poisson’s equation 1s exact, and is valid for all
states of the system. It is derivable from an equation of
continuity' and is one relation relating three unknowns,
namely (1) the electric potential profile, (i1) the dielec-
tric profile and (iii) the charge density profile. The
electric potential at a specified location in the system
arises from contributions from all charged ions present
in the system. The charge density at a specified location
in the system, 1s the product of protonic charge and the
algebraic sum of concentrations of all ionic spectes pre-
sent at this location, weighted down by their signed va-
lence charge numbers. The charge density i1s therefore,
proportional to concentration of a specified 1onic spe-
cies in the homogeneous region, where such concentra-
tions are independent of position variable. With the
usual convenient assumption that the positional depend-
ence of dielectric coefficient can be neglected, one may
integrate the charge density profile, derivable from con-
centration profiles, to obtain the electric field profile.
One can also obtain the electric potential profile by a
second 1ntegration with respect to position variable,
over the extent of the inhomogeneous region, 4. Such
resultants will still be proportional to concentration of a
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specified ionic species of the electrolyte in the bulk ho-
mogeneous region (see note 1).

On the other hand, the Nernst expression relates the
difference in electric potential at two locations in the
system, with the ratio of concentrations of a specified
tonic species at these two locations. Therefore, Nernst
or, Boltzmann kind of expression requires that the elec-
tric potential is independent of the absolute value of
concentration of a specified ion in the bulk homogene-
ous region and is dependent only on the ratio of concen-
trations.

Boltzmann equilibrium distribution, from which the
Nernst expression is obtained as an approximation, 1S
valid exactly. This 1s because, concentrations represent
probability, and probabilities are related to energies in
an exponential manner. This ts the basis of the famous
Boltzmann law, § = k InW, where S denotes the entropy,
W is probability and k is the Boltzmann constant. There-
fore, so long as relation of the Nernst kind 1s valid for
concentrated electrolyte solutions, the magnitude of the
electric potential should not be proportional to concen-
tration of a specified ion in the homogeneous region.
Thus, there exists a paradox which needs to be resolved
(see note 2).

The contents of this paper and its conclusions are
based on the validity of three fundamental (nearly) exact
equations of physical chemistry and the conclusions de-
rived from them:

1. Poisson’s equation states that the second derivative
of the electric potential, ¥, can be expressed as product
of a function of position variable and concentration C of
the electrolyte in the homogeneous region. This depend-
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ence on C, cannot and should not vanish upon integra-
tion of the charge density profile of an inhomogeneous
region, with respect to position variable x, over the fi-
nite extent of the inhomogeneous region. Integration of
the charge density profile will lead to the electric field
profile. A second integration over the position variable
of the resultant will yield the electric potential profile.
The position variable x, is defined along a coordinate
normal to the surface, say, containing a set of fixed
charges. Therefore, the validity of the Poisson’s equa-
tion requires that the electric potential at a specified
location in the inhomogeneous region, should be pro-
portional to the concentration C, of the electrolyte in the
bulk homogeneous region. Since the integration 1s to be
performed over the finite extent of the inhomogeneous
region, the extent of the inhomogeneous region, d enters
as a parameter. It is assumed that the inhomogeneous
region is finite and extends, from x = 0 to x = d. There-
fore, the first derivative of the electric potential profile,
namely, the electric field will be proportional to d.
Similarly, a second integration will result in a function
proportional to d”.

2. At equilibrium the Boltzmann distribution derivable
from statistical mechanics is exactly valid. Since en-
tropy i1s additive and probability is multiplicative, the
relation between energy and concentration 1s logarith-
mic. The Nernst expression, derivable from exact
Boltzmann law, states that the electric potential should
not be dependent on the absolute value of concentration
but only on the ratio of concentrations.

3. The third equation which is again exact, when
positional dependence of dielectric coefficient in the
inhomogeneous region, can be ignored, is the Maxwell’s
Osmotic Balance equation, discussed in this paper later.
Maxwell’s Osmotic Balance equation relates the electric
field profile, ®'(x), with the profile, A(x), which repre-
sents the sum of concentrations of all solute molecules
in the system. This equation leads to the conclusion that
electric field at a specified location should be propor-
tional to square root of concentration, C of the electro-
lyte. Maxwell's Osmotic Balance equation also
stipulates that the inhomogeneous region should be fi-
nite in extent. These three conclusions are satisfied, (1)
if the extent of the inhomogeneous region is finite and
(11) 1ts magnitude varies inversely as the square root of
electrolyte concentration in the homogeneous region.
Knowledge of concentration profiles in the inhomoge-
neous system enables one to evaluate the electric field at
any arbitrarily chosen location in absolute terms.
Equating this with the results obtained by integration of
the charge density profile, enables one to evaluate the
extent of the inhomogeneous region. These enable one
to verify the contentions of this paper. These summarize
the basic results of this paper.

If the distribution of ions in the inhomogeneous region
1s determined by the presence of excess charges at one

CURRENT SCIENCE, YOL. 74, NO. 4, 25 FEBRUARY 1998

— - - —

location, and the extent of inhomogeneous region is fi-
nite, then mass conservation equations should necessar-
1lly be satisfied. Accumulation of a certain kind of ions
in some location should lead to depletion of such kind
of ions, elsewhere. Therefore, concentration profiles of
such 1ons in the interfacial region should exhibit ex-
trema values. This implies that the charge density pro-
file, which 1s the resultant of concentration profiles
should also exhibit similar extrema values. Classical
theory predicts only monotonic concentration profiles,
though Kirkwood and Poirier” have suggested the exis-
tence of such stratification of layers of alternate charge
density, in concentrated electrolyte solutions. If concen-
tration profiles of ions in inhomogeneous region near a
surface with one kind of fixed charges are monotonic, as
classical theories predict, it is difficult to find the an-
swer to the question, viz. What is the sign and magni-
tude of charge density and electric potential at the
surface?

Considerations of the theory

In an inhomogencous region, containing »n kinds of ions,
under isothermal equilibrium condition, there are (n + 2)
unknowns, namely the concentration profiles of the n
such 1onic species, electric potential profile, ®(x), and
the dielectric profile, e(x). Due to lack of better infor-
mation, one usually adopts the approximation that the
positional dependence of dielectric profile may be ne-
glected. To solve these problems, therefore, one needs
(n + 1) simultaneous equations, which are independent,
to obtain these (7 + 1) unknowns. Poisson’s equation
gives the relationship between the potential and the
charge density, p(x). Charge density can be expressed as
proportional to concentration of a specified tonic spe-
cies of the bulk homogeneous region, where concentra-
tions are position independent, when the extent of
inhomogeneous region is of finite extent, 4. Therefore, 1t
follows that the electric potential at a specified location
in the inhomogeneous region 1s proportional to concen-
tration of a specified 1on in the homogeneous region.
The basic starting point of the theory of strong elec-
trolyt653 and diffuse double layer theory® has been the
Poisson-Boltzmann equatton, in its simple form. This
equation 1s derived by the combination of the Boltz-
mann—Nernst expression and Poisson’s equation result-
ing in a single nonlincar differential eq. (5). By
utilization of the convenient assumption that one may
ignore the positional dependence of the dielectric coef-
ficient, and that the concentrations of charged species in
an inhomogencous region can be expresscd adequately
by the Nernst distribution, one reduces this equation 1o
one equation involving one unknown, namely the de-
rivatives of the electric potential profile, In this paper,
we do not discuss Poisson-Boltmann equation. Instead,
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we concentrate on the implications of Poisson’s equa-
tion and Nernst expression.

The Poisson’s equation is expressed (in one dimen-
sion) in the form,

(d/dx){e(0)[dP/dx]} = Y(x) = ~4 e Y o Z,Colx), (1)

where ®(x) is the value of electric potential at location
x, in the system. €(x) is the value of dielectric coetfi-
cient at location x. x is a position variable normal to the
y~z plane, along which the variation of various quanti-
ties is considered. C,(x) is concentration of 1onic species
of kind o, Z, is its signed valence charge number and e
is the protonic charge. The electric potential profile and
the charge density profile are the resultant of the con-
centration profiles of 1onic species (see note 3).

The Nernst expression, utilized in the derivation of
Poisson-Boltzmann equation, for the distribution of ions
in cquilibrium state, 1s,

Colxy) = Colxy) exp [(Z,e/kT) {P(x1) — P(x2) } ], (2)

where & is the Boltzmann constant and T 1s temperature
in the Kelvin scale.

The approximation involved in obtaining the Nernst
expression, from Boltzmann equation, 1s that the ener-
getic part of the free energy of ionic species 1s ascribed
as only due to electrostatic part of the energy. Nernst
expression is exactly valid, when the limiting expression
for the chemical potential i, of an ion of kind g, at lo-
cation x, in solution, viz.,

Uo(x) = (T, p) + kT In Cyx{x) + ZzeD(x) (3)

is valid. In eq. (3), p is pressure and u, (T, p) is the
chemical potential of ions of kind o, in its standard
state. The logarithmic dependence of chemical potential
on concentrations comes from the statistical considera-
tions of entropy of mixing of ideal solutions, in which
the mole fraction has been replaced by concentrations
when solute concentrations are small. The contribution
to free energy of an ion, from an external potential, such
as an electric field to a charged species is added to this
mixing terms of ideal solutions, in an ad hoc phenome-
nological manner (see note 4).

An expression of considerable interest to the subject
in question, is the Maxwell’s Osmotic Balance equation
namely,

[8kT/E){A(x)) - A(x2)} = D' (x;) - D (x),

Alx) = 2,,Ch(x),

d'(x) = {dD/dx). (4)

A(x) denotes the sum of concentrations of all solute
lonic species at location x in the system. ®’(x) denotes
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the value of the electric field at location x. A(x) is pro-
portional to concentration C of a specified ion in the
homogeneous region. Maxwell’s equation is valid ex-
actly, if the limiting expression (3) for the chemical po-
tential of an 10n 1n solution is valid, and if the dielectric
coefficient 1s independent of the position variable x. An
important conclusion of Maxwell’s Osmotic Balance
equation is that the electric field is proportional to
square root of the concentration.

Thus, we have three main conclusions: (i) Poisson’s
equation demands that the second derivative of electric
potential profile is proportional to local charge density,
and therefore to concentration of a specified ion in the
homogeneous region, (i1) that the Maxwell’s Osmotic
Balance equation, which 1s exactly valid, if the limiting
expression for the chemical potential of an ion is given
by eq. (3), states that the electric field is proportional to
square root of concentration of a specified ion in the
homogeneous region, and (iii) that the Nernst expression
requires that the electric potential is independent of ab-
solute value of concentration of a specified 1on in the
homogeneous region.

When one integrates the charge density profile to ob-
tain the electric field profile, over the finite extent of the
inhomogeneous region, as a definite integral, a result
proportional to (Cd) will be obtained, where d is the
extent of the inhomogeneous region, and C concentra-
tion of a specified electrolyte in the homogeneous re-
gion. A second integration leading to the electric
potential profile will similarly yield a result proportion
to (Cd”). Therefore, the basic requirement for the reso-
lution of the inconsistency existing between the Pois-
son’s equalion and the Nernst expression ts that the
extent of the inhomogeneous regton is finite and not
infinite. The implication of this conclusion with refer-
ence to our current concept of the theory of diffuse
double layer is very significant. The appropriate bound-
ary conditions that one must therefore utilize, are that
the electric potential and its first and second derivatives
vanish at finite distance from a surface containing field
charges in the adjacent electrolyte. Both in the theory of
strong electrolytes and in the Gouy-Chapman theory of
diffuse double layer, it i1s usually assumed that the elec-
tric potential and electric field vanish at infinite distance
(see note J3).

One must recall that the limiting expression (3), for
the chemical potential of an 1on in solution, is valid only
for extremely dilute solutions. The presence of charges
of one kind on a surface in contact with an electrolyte
containing both kinds of ions, alters the distribution of
ions in the adjacent electrolyte solution, by attraction of
oppositely-charged ionic species to be in closer proxim-
ity with the surface and repelling similarly-charged 1ons
to be further away from the surface. In this manner, an
inhomogeneous region with a charge density profile oc-
curs in the interfacial phase. If the concentration of
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localized charges on the surface is larger, one will ex-
pect that more ions of unlike kind will be attracted to be
in closer proximity to the surface. Such large accumula-
tion of similarly-charged ionic species will, however, be
expected to be resisted by the mutual repulsion between
similarly-charged species to congregate in close prox-
imity. Therefore, the local charge density will play a role in
the distribution of ions in the interfacial region. This can be
expressed, at least approximately, by the modification of
the simple Nernst expression”, in the manner

Co(x1) = Colxz) exp[(Zoe/kT){ F(x3) ~ F(x1)}],
F(x) = O(x) + [Heldn}Y(x),
Y(x) = 43562025%(%)- (5)

The term exp{(Z,eH/4nkT)Y(x)] denotes the activity
coefficient of ions of kind o, in the inhomogeneous re-
gion, where dipole-ion electrostatic energy term contri-
butions have been neglected. When one ignores the
presence of the charge density term, Y(x) in F(x), one
recovers the familiar Nernst expression. In eq. (5), H
represents a molecular Integral term and denotes the
integral contribution of all ionic species to the chemical
potential of a specified ion arising from intermolecular
interionic interactions. The derivation and justification
of eq. (5) is presented elsewhere®, An important point to
be noted is that the concentration distribution of charged
species in the interfacial region is determined by the
local charge density terms, Y(x), 1n addition to the elec-
tric potential terms, ®(x) in the interfacial region, where
electrolyte concentrations are not insignificant.

Eq. (5) states that the Boltzmann kind of equation relat-
ing the electric potential with the concentrations in a loga-
rithmic manner is still valid for more concentrated
solutions. Another important point that one should take into
account, in analysing ion distributions in inhomogeneous
interfacial region is that accumulation of one kind of spe-
cies in any specified location in the interfacial region
should lead to depletion of such kind of species elsewhere
in the region, due to mass conservation conditions. There-
fore, extrema points will exist in the concentration profiles
of solute 1onic species in the interfacial region. The mass
balance equation condition can be written as

d
| Colxdx = Gy, (6)
0

where C,(d) denotes the concentration of ions of kind o,
1n the homogeneous region and d is the magnitude of the
extent of inhomogeneous region (see note 6).

Results

If what has becn stated so far is reasonable and correct,
one must conclude that the inconsistency existing be-
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tween the implications of the Poisson’s equation and the
Nernst expression should not exist. The numerical calcu-
lations presented in this paper, for the chosen three ex-
amples of systems, demonstrate the validity of our
conclusions. I choose two examples of a univalent sym-
metrical 1on system (systems 1 and 2), and one example
of an unsymmetrical 2—-1 1on system, with divalent posi-
tive ions (system 3). I assume in the first example
(system 1), that a surface containing univalent negative
charges with concentration (per unit volume) of five
times the concentration of univalent negative charges in
the bulk homogeneous region, 1s in contact with a 1-1
electrolyte. In the second system, the surface is assumed
to contain univalent negative charges with ten times the
concentration of univalent negative ions, C, in the bulk
homogeneous region. The third example I consider is a
2-1 electrolyte system, with divalent positive ions,
which has a surface containing univalent negative
charges with five times the surface concentration, C (per
unit volume) of univalent negative ions tn the homoge-
neous region. The stipulation of the concentration (per
unit volume) of certain kind of ionic species at the sur-
face and in the homogeneous region yields the values of
the gradient of electric potential at the surface, in
absolute terms apart from its sign, with the use of uni-
versal constants and the Maxwell’s Osmotic Balance
equation.

For illustrative purposes, it is assumed in the follow-
ing calculations that the dielectric coefficient & equals
80 and that the temperature equals 293.15 K. The values
of universal constants utilized are: e = 4.80286 x 107
esu, and N=6.02486 X 10 per mole, and
k= 1.38044 x 107'° ergs mole™. The knowledge that C
(0) equals 5 C, and utilization of Nernst kind of equa-
tions (3) or (5) yields the result that C(0)=0.2 C.
Therefore, for system (1), we have AA equals 3.2 C,
where C is concentration of the 1-1 electrolyte in the
homogeneous region. Thus, one obtains

®’(0) = + 495.082 (esu/cm?), when C = 0.01 (m/]),

®’(0) = = 1565.59 (esu/cm?), when € = 0.10 (m/}).
For system 2, when C—(0) = 10 C, one obtains

®’(0) = + 787.6706 (esu/cm?), when C = 0.01 (m/1),

d’(0) = + 2490.833 (esu/cm?), when C = 0.10 (m/1).

Similarly, for the unsymmetrical ion system (3), one
obtains

d’(0) = + 519.2463 (esu/cm”), when C = 0.01 (m/l),

d’(0) = + 1642.0012 (esu/em?), when C = 0.10 (/).
(8)
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In obtaining the results of eq. (8), I have utihized the
identity that erg.cm equals (esu)’. The results of eq. (8)
indicate that as concentration of charges on the surface
is increased. the electric field at the surface increases, as
one should expect. When concentration of electrolyte C
in the bulk i1s increased ten fold, the electric field at the
surface Increases by a factor of square root of ten.
Maxwell's Osmotic Balance cquation yields the value of
electric ficld at the surface, without specifying its sign
uniquely. However, the sign of electric field can be
specified uniquely, from the integral of charge density
profile, by stipulating that the concentrations of 1ons and
the extent of inhomogeneous region, which are physical
quantities, have positive defintte values.

Evidently, if one has the knowledge of concentration
profiles of ionic species in the interfacial region, then
one can compute the charge density profile, and an inte-
eration of the charge density profile will yield the elec-
tric field profile. The computed field profile will
however, contain the unknown, d, namely the magnitude
of the extent of the inhomogeneous region. Knowledge
of the concentration of solute ionic species at the sur-
face as well as in the bulk homogeneous region, will
enable one to compute the value of sum of solute ion
concentrations, viz. A(x), both at these two locations.
Since the value of electric field at location d, ©'(d), can
be assumed to equal zero, one knows the magnitude of
the electric field at the surface, apart from its sign in
absolute terms, from the knowledge of universal con-
stants. Equating the two values of electric field obtained
from the integration of charge density profile with the
result of the Maxwell’'s Osmotic Balance equation,
yields the value of d. A second similar integration will
lead to the evaluation of both the magnitude and the sign
of the electric potential at the surface, assuming that the
¢lectric potential has null value in the bulk homogene-
ous region. Thus, verification of what has been stated in
the foregoing is possible, if one has knowledge of con-
centration profiles of ions in the interfacial region.

Assume that concentration profiles of positive ions,
when a surface with excess of negative charges is in
contact with the simple electrolyte, can be expressed in
a Taylor sertes. Assume in addition that the concentra-
tion profile of positive ions can be adequately repre-
sented by retainment of the leading five terms of such a
Taylor series and that one can neglect of higher order
terms with negligible error. The use of the three bound-
ary conditions, viz. that the first and second derivatives
of concentration profile vanish at x =d, and that such

ions obey the mass balance eq. (6), yields the ratio of

any two of the leading five Taylor expansion coeffi-
cients of the concentration profiles of ions in the inho-
mogeneous region.

The boundary conditions, to be utilized, for the
evaluation of concentration prefiles of positive ions of

the system are:
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(dC*(x)dx}4 =0 = {d°C + (x)dx)?),

d
jC*(x)dx =C'd, (9)
0

where C is concentration of univalent negative ions of
the electrolyte in the bulk homogeneous region. Eq. (9)
follows from the fact that in the homogeneous region,
over a distance d, C'd represents the integral amount of
1ons of kind + present in this layer. This amount of
ion is redistributed in the inhomogeneous region of ex-
tent d.

The concentration profile of positive jons is expressed
in a truncated Taylor series,

C.(x)= i C..x'.

=0}

The ratios of the leading five Taylor coefficients are
obtained as

Coy =— (8/5)Ciad,
C,z = (18/5)C,4d",
C.3=—(16/5) C,.d,

5Cia = C'(d) - C'(0). (10)

Similarly, for a 2-1 ion system, when C (o) = 5C7(d),
C**(0) equals 0.04 C(d) = 0.02 C**(d)). The concentra-
tion profiles of the positive 1ons in the interfacial region
are known. From the knowledge of the concentration
profile of specified kind of positive ions, the concentra-
tion profiles of all other 1ons present in the system can
be computed, with the utilization of the equations,

C*'(x)C(x) = CHd)C™(d),

[C?*H(x)/ICPH(d))] = {C(d)IC (o)} (11)

These are the simplest concentration profiles of tons
that one can assume to be valid in the interfacial region.
Such resultant profiles are subject to the validity of the
assumptions invoked about the boundary conditions and
neglect of higher order terms. If better knowledge about
the concentration profiles is avatlable in future, then the
calculations may be improved. However, Nature is sim-
ple. The demonstration that the values of electric po-
tentials obtained with these concentration profiles are
indeed independent of absolute values of concentrations,
as required by the Boltzmann—Nernst kind of equations
suggests that the concentration profiles presented in this
paper may have more general validity than one may ini-
tially suspect.

CURRENT SCIENCE, VOL. 74, NO. 4, 25 FEBRUARY 1998



GENERAL ARTICLES

An extremum in the concentration profiles occurs at
location x = 0.4 d for all the three systems considered.
At this location, the maximum accumulation of positive
ions is about 1.17 times their concentrations in the ho-
mogeneous region. In all three cases considered, the
charge density equals zero at x = 0.2 d. Also the value
of A(0.2 d) equals A(d), implying that an extremum in
clectric potential profile occurs at this location in the
interfacial region. However, since the charge density
also equals zero at this location, an inflection point of
electric potential profile also occurs at the same loca-
tion. (Since, inflection and extrema points occur at the
same location, the existence of an extremum in electric
potential profile in the interfacial region 1s no longer
assured.) From the computed concentration profiles of
cations and anions, one can calculate the charge density
profile. The resulting charge density profile 1s fitted
numerically into a finite polynomial of sixth order.
These represent the leading seven Taylor coefficients of
the charge density profiles. The results obtained for the
three systems are presented in Table 1. The assumed
values of boundary concentrations for system 1, that
Yo=48 C, imply that Yo equals 21.81756 x 10°
(esu/cm’), when C =0.01 (m/l). The utilization of the
values listed in Table 1, and integration, yields the result
that ®'(0) = +7.5349 (C/ey) d, where gy 1s the value of
dielectric coefficient at x =0, namely the surface. As-
suming that &, equals 80, one  obtains
Dd'(0) = 13.5445 x 10° d (esu/cmz) for sysiem 1. Since
both C and d are positive definite, the electric field at
the surface is positive definite. Thus, for system (1), one
obtains the results that d equals 36.551 x 10™° cm when
C equals 1 x 107 (moles/cm3), [C =0.01 (m/]) and that
d equals 11.585x 10" c¢m, when C equals ten times
larger, i.e. [C=0.10 (m/1)}. The computed values of d
for the three systems are listed 1n Table 2.

Conclusions

The value of the electric potential at the surface contain-
ing an excess of negative charges can be obtained
by twice integrating the resulting charge density pro-
files, over the extent of the inhomogeneous interfacial
region

p—

d [d
*J<J‘Y(x)dx
0 L0 )

J- L

\1

é

= D(d) = P(0). (12)

For system |, the values of Table 1, utilized yicld that
the electric potential at the surface should equal

d(0) = ~ 8.999146 x 10° Cd*,
D(d) = 0. (13)
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Table 1, Computed values of the leading seven Taylor coefficients
of charge density profiles for the three systems

il i — — - ik .

System | System 2 System 3

Yo/ C 4.8 9.9 4.98

Y d/C ~82.062 -195.808 ~91.051
Y,d*C 603.063 1,554.072 694.298
Y1d*/C ~2,370.409 ~6,204.841 ~2,739.029
Yid/C 4,991.961 12.861.689 5.663.593
Ysd/C ~5,205.397 ~12,998.777 ~5,723.434
Yed®/C 2,058.044 4,973.764 2.190.643

Table 2. Computed values of various quantities for the three sys-

tems
Quantity System 1 System: 2 System 3
d (C =0.01) 36.551 A 18.987 A 53.6775 A
d(C=0.10) 11.559 A 6.004 A 16.974 A
DEMC=0.01] -39.3194148 mV -48.544647 mV  —-37.993833 mV
(o) [C=0.10] -39.319415mV -48.547814mV  —37.993844 mV
F(o) +40.9227 mV +58.54714 mV  +40.9227 mV

i e e ey o Sl — -

1A=1x10%cm. The values of electric potentials are exhibited
with larger than required number of decimal places to emphasize the
excelient agreement.

Since both C and d are positive definite, eq. (13) implies
that the electric potential at the surface should be nega-
tive definite as it should be, when one recognizes that
the concentration of charges at the surface is predomi-
nantly negative.

One obtains for the system 1, the values

d(0) = ~1.202264 x 107 (esu/cm)

= —39.3194 muillivolts, (14)
when concentration of univalent symmetrical electrolyte
C equals etther 0.01 moles per 1 or ten times larger, viz.
C = 0.1 moles per L. In these calculations, I have utilized
the converston relation that 10 millivolts equal
0.3313733 x 107 (esu/cm). I have demonstrated by
these kind of calculations that the calculated values of
electric potential at the surface are independent of the
absolute values of concentrations of a specified 1on In
the homogeneous region, as required by the Boltzmann-—
Nernst kind of relations, while retaining at the same
time, the validity of the Poisson’s equation that the sec-
ond dcrivative of electric potential profile be propor-
tiopal to concentratton of a specificd ion in the
homogeneous region.

The existing paradox has been solved i this paper, by
the use of the three fundamental equations, In ovder to
convince ourselves that this is not an accidental result,
the calculations are repeated for  alt three systems and
the results are presented tin Table 2, In that table, the
resultant values of clectric potentials obtained are pre-
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sented in larger number of digits than usvally required
ta exhibit the excellent agreement obtained for all the
three systems. The computed values of electric poten-
tials are very sensitive to determined values of d.

An interesting point that one may notice from the val-
ues listed in Table 2. is that the value of d, the extent of
inhomogeneous region for the 1-1 electrolyte system 1,
when concentration of electrolyte is 0.01 moles/liter,
equals 36.551 A. This value approximates very closely
the value of ion atmosphere radius (1/«) of the classical
Debye-Huckel theory, which yields a value of 30.942 A,
under similar conditions (see note 7).

One of the basic requirements for the evaluation of d,
the extent of the inhomogeneous interfactal region, as
well as the resolution of the paradox mentioned, 1s that
the extent of inhomogeneous region is finite and that
both ®(d) and the electric field, ®’(d) vanish at x =d.
Recall that the boundary conditions utilized in strong
electrolyte theory and in Gouy-Chapman theory of
double layer are that the electric potential and the elec-
tric field vanish at infinite distance rather than at finite
distance from a specified ion or surface 1n question.
Though these are reasonable and valid boundary condi-
tions, 1t should be remembered that no effect remains
finite in magnitude up to infinite distance in the real
world”.

In summary, the main conclusions derived 1n this pa-
per may be listed as follows: Both Poisson’s and Boltz-
mann expressions are rigorously valid. These lead to
what appears to be mutually contradictory conclusions
regarding the dependence of electric potentials on con-
centrations of ions in solution. This apparent inconsis-
tency is resolved by resorting to considerations of the
validity of Maxwell’s Osmotic Balance equation, which
implies that the electric field is proportional to square
root of 1on concentrations. Both Nernst equation and
Maxwell’s Osmotic Balance equation are valid exactly,
if the limiting expression for chemical potential of 10ns
1n solution is valid, and positional dependence of dielec-
tric coefficient i1s 1gnored. This approximation also en-
ables one to evaluate the extent of the inhomogeneous
interfactal region. Assumed validity of Maxwell’s Os-
motic Balance equation enables one to evaluate the
electric field in absolute terms using universal constants.
The analysis presented in this paper reinforces the basic
belief, that if a plane in the system contains an excess of
negative charges, then the potential on this surface
should be negative. An evaluation of contributions from
ton—ion interaction energy to chemical potential is also
presented,
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Notes

1. The statement that Poisson’s equation st:pulates that the second
derivative of electric potential, ®”, the electric field and the
electric potential are all proportional to concentration C of the
electrolyte, or, concentration C,, of a specified ion o, in the ho-
mogeneous solution requires clarfication. Poisson’s equation
gives the relationship between the electric potential and charge
density, This is exhibited in eq. (1) of this paper. The validity of
the statement ts best seen for a system with a simple symmetrical
univalent ion system, in the inhomogeneous interfacial region.
For a system with a 1-] electrolyte system, eq. (1) can be written
with the assumption of constant dielectric coeflicient, £, for one
dimenstonal case as,

e[d’°®/dx?] = —4neC (exp(-y) — exp(+y)},
since C'(x) = C’(w) exp(-y).

In this equation, y(x) = [eD(x)}/kT] and x is a position variable
normal to plane of an interface. Since C *(o0) = C () =C, the
concentration of electrolyte in homogeneous region, it follows
that the second derivative of electric potential at a specified loca-
tion in the inhomogeneous region is indeed proportional to con-
centration of either a specified ion or an electrolyte in the
homogeneous region. This dependency of ®(x} on C, cannot and
does not vanish upon integration, and hence the statement that
Poisson’s equation implies proportionality between the electric
potential ®(x) and concentration C, of the electrolyte in the ho-
mogeneous region. Though very approximate, the solution for the
electric potential obtatned by simple Debye—Huckel theory, where
®d(x) is dependent on «*, where « is the ion atmosphere parame-
ter, also supports our contention. When the inhomogeneous re-
gion contains an unsymmetrical electrolyte mixture, the
concentration of a specified ion, say o, denoted by C,(x) at loca-
tion x, in the inhomogeneous interfacial region can always be
stated as some fraction or multiple of concentration of same ion
C,(d), in the bulk homogeneous solutton. C,(d) again can be
stated as some fraction of C, where C is the concentration of
electrolyte in the bulk homogeneous system. In the same manner,
one may consider the situation at an electrode/electrolyte inter-
face. At equtlibrium, the charge on the elecirode is proportional
to the number of electrons, or tons, present on the (metal) elec-
trode per unit area or per unit volume. The net charge residing on
the electrode, and resultant electric field resultant in the inhomo-
geneous region, is a function of concentration of electrons in this
case. Concentrations are particles per unit volume and have the
same dimensions as concentration of charges, which can be ex-
pressed as the number of electrons per unit volume. Therefore,
the net charge on the electrode can also be expressed as product
of bulk electrolyte concentration times a proportionality constant.
Therefore, it follows that the charge density at any arbitrary loca-
tion in the interfacial region can always be expressed as a product
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of a yet unspecified function of position variable times C or C,(d)
both of which are independent of position variable x. Therefore,
the second derivative of electric potential can always be ex-
pressed as some function of position variable times C. Hence the
statement, that Poisson’s equation states that the electric potential
at any specified location x, in the interfacial region is propor-
tional to C or C,(d), where C,(d) denotes the concentration of
specified kind of ion in the homogeneous region, is always valid.
. Concentrations denote probability of observing a particle in a
small element of space. One obtains the ideal entropy of mixing,
as well as the expression for the dependence of the chemical po-
tential of a substance j, #;, on composition of a mixture contain-
ing noninteracting species as,

u; (T, p, X)) = w (T, p) + kT InX;,

where X; is the mole fraction of species j in the mixture. 7 1s
temperature and p is pressure. k is Boltzmann constant. For sol-
utes such as electrolytes, where solvent is present in excess, mole
fractions can be replaced by concentrations. For charged species
such as ions, the contribution from external field to partial molal
free energy (chemical potential) of an 1ons of kind, o, 1s phe-
nomenologically added in an ad koc manner. One obtains in this
manner, the limiting expression for the chemical potential of an
ton in soluticn as

w (T, p, x) = u," (T, p) + kT In C,(x) + Z,eD(x),

where Z, ¢ is the charge present on an 1on of kind 0. ®{(x}) is the
electric potential at location x, in the inhomogeneous region, and
C.(x} is its concentration at location x. Since at equilibrium, the
chemical potential of a species should be the same everywhere,
equating the values of chemical potential at two distinct loca-
tions, one obtains the basic Nernst expression (3), relating the
difference 1n electric potential at these two locations with the ra-
tio of concentrations of a specified ion at these two locations.

. This statement is best explained by the following argument. If
C,(x) represents concentratton of ions of kind # at location x,
while C_ denotes concentration of ions of kind 7 the inhomoge-
neous region, one may express C (x) = C F (x). If r, represents
the ratio of concentrations of ions of kind o and 1ons of kind » in
the bulk homogeneous region, (r, = {C,/C,}), the right hand side
of eq. (1) may be written, for example, for a three ion system, as

—4 weCy {Fi{x) + rnFix) + r3Fi{x)}.

Therefore, the charge density at Jocation x, in the inhomogeneous
region can always be expressed as proportional to concentration
of a specified ion 1, C| in the homogeneous region. An integra-
ton of the second derivative of the electric potential profile,
leading to electric field profile, will also be proportional to con-
centration. An additional integration over the extent of inhomo-
geneous region, resulting in the electric potential profile, will
again lead to a result proportional to concentration of specified
Kind ions, C, in the homogeneous region.

. For concentrated electrolyte solutions, in order that equation of
the kind (3) is valid, one replaces the concentration terms C, of
eq. (3) by a term called the activity, a,, of ions of kind o, in solu-
tion. Activity is related to concentration by definition by the re-
lation,

ﬂﬂ’ = yﬂcﬂt
where v, is called the activity coefficient. Both the definition of
activity and activity coefficients are only phenomenological and

are only fudge factors, expressing our ignorance about the varia-
tion of chemical potential of a specified species with composition
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of a solution. The dependence of chemical potential on concen-
tration is one of the unsolved problems of physical chemistry,
though it is claimed in the literature, that both Mayer—McMillan
theory and Kirkwood-Buff theory of solutions have solutions to
this problem. One should disagree with this claim, since both
these theories are symmetrical in their dummy indices, denoting
components of a mix{ure, while experimental observations of free
energy of mixing of various solutions are invariably unsymmetri-
cal. In concentrated electrolyte solutions also, when activities are
utilized in place of concentrations, one still obtains Nernst kind
of expressions, where the electric potential term is modified by a
local charge density term, which is discussed later in this paper.
Acttvity coefficient is the resultant due to interparticle interac-
tions and is a correction term to the equiltbrium expression for
chemical potential.

. Eq. (4) may be derived as follows: The differential of eq. (3)

yields

{dC, fdx} = - [(Ze/kTYC,(x)] {dD/dx}

valid for all 1ons of the system. Summing over all ionic species
present In the system, with the utilization of the Poisson’s equa-
tion results in the expression,

[dA(x)/dx) = [e/4xkT){dD/dx) {d>D/dx?),

in which the assumption that the diclectric coefficient is inde-
pendent of x has been inserted. Use of the identity,

(d/dx{(dD)dx)*} = 2 {d*®/dx?} {dD/dx)

and integration yields eq. (4).

. One may conclude with much haste, that eq. (6) is not tenable for

the following reasons. Since charge density profile consists of the
algebraic sum of concentration profiles of ions, weighted by their
signed valence charge numbers, and the sum of such integrals™
over the extent of the inhomogeneous region, over all the ionic
species present 1n the system, will be zero, since the integral op-
erator is a linear operator and therefore, will result in constant
zero charge density profile and hence lead to constant zero elec-
tric potential profile. The influence of an external electric field
arising from the presence of a surface with charges 1s to separate
charges of opposite signs, while electroneutrality conditions fa-
ctlitate charge unification. The balance between these two con-
flicting tendencies results in the existence of the charge density
profile of the inhomogeneous region.

The validity of the Nernst—-Boltzmann equation requires that
when 1ons of certain kinds satisfy the mass balance conditions
presented by eq. (6), there exists at least ong kind of 1onic species
in a many-ion system, whose profile dogs not satisfy the mass
conservation conditions. One should expect that the kind of
charges that do not satisfy eq. (6) is the same Kind of ions present
in the surface. This is identical to the classic statement that inte-
gral of the charge density profile over the extent of the inhomo-
geneous interfacial region, equals the negative of the surface
charge density (macroscopic electroncutrality condition). One
may verify that if 1n a symmetrical untvalent ion system, i1f con-
centrations of positive 1ons and negative ions are respectively
given by relations of the kind

C*(x) = Cexp [-N)],
C™(x) = Cexp [+f(x),

then the integral

Ig {C*x) = C(r) dx, will not equal zero,

for nny reasonable function, fi), (D
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Therefore, ¢q. (A) docs nat suggest constant, zero clectrie field or

cleetric potential profile, as one may suspect due to the linear

nature of the tategral operator, The right hand side of eq. (7) will
equal - (surface charge density). If the net charge density on the
surface s negative in sign, eq. (6) will not be satisfied
by the negative jons of a 1-1 electrolyte of the homogeneous re-
gion,

7. Thongh our conclusion that the extent of the inhomogencous
recion. d, varies inversely as square root of electrolyte concentra-
tions. C. is similar to the conclusion of Debye-Huckel theory that

the ton atmosphere parameter, &, also varies as square root of

electrolvie concentration, C, these two are not the same, Poisson~
Boltzmann equation is a nonlincar differential equation, obtained
by inscrtion of the Boltzmann distribution of concentrations in
the Poisson’s equation, replacing m this manner, the charge
density term, by the electric potential term, resulting in a single

L
i - i, S = Ee— ar - "

Nl

diffcrential equatton involving a single unknown, namely the
clectric potential < and its derivatives. Expansion of the expo-
nential and retention of only the first nonvanishing terms, and
neglect of all higher order terms, results in a simple linear differ-
ential equation of the kind,

(d’d/dx’} = ki dix),
where x? is proportional to concentration C. Thus, the conclusion
that one obtains from the Deby-Huckel theory is an approxima-
tion and bears no relevance to the conclusions obtained in this
paper regarding d. Although Debye-Huckel theory of strong
electrolytes furnishes a strikingly satisfactory account of many of
the properties of electrolyte solutions, it is based upon physical
assumptions which, though plausible, are not in exact accord with
the format theory of statistical mechanics.
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Wait and see strategy for leaf miner control in

rainfed groundnut

S. A. Paranjpe and A. P. Gore

We propose a methodology for analysis of rainfall data to develop a management strategy for a
rainfed crop. As an illustration we discuss control of leaf miner in groundnut. The strategy de-
rived from rainfall analysis saves about 10% and 6.5% of gross yield more than other simple
strategies namely (i) never spray or (ii) always spray respectively. The recommended strategy is
to wait for rains up to six days after onset of leaf miner attack and then spray if rains fail.

IMPROVEMENT in the productivity of rainfed agriculture
i1s a major challenge for India today. Apart from the
possibility of developing crop varieties better suited to
rainfed conditions, it is also important to fine-tune man-
agement strategies including choice of sowing date, pest
control measures, disease prevention, etc. Qur conten-
tion is that detatled analysis of rainfall data can throw
more light on relative profitability of alternative strate-
cies. Daily rainfall data available for about a century
can be used to gauge the conditions most hkely to occur.
They usually determine the consequence of a specific
action. This evaluation is necessarily based on a series
of assumptions about crop growth, occurrence and de-
velopment of pests, etc. The assumptions used herein
are tentative and can readily be modified. That of course
may change the conclusions reached. The attempt, how-
ever, 1S to propose a heuristic methodology which can
be applied no matter how the assumptions change.

As an illustration of our methodology, we consider the

problem of controlling leaf miner in groundnut. Leaf
miner (Aproaerama modicella Dev.) is a major pest of
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groundnut in southern and central India. It is capable of
almost totally wiping out the crop which has a potential
yield of about 4 quintals per acre. The common measure
to control this pest is to spray chloropyrephas at 2 ml/l
using 250 l/acre. For the purpose of illustration we use
market prices of 1995 given by Gadgil et al.”’. At these
rates the gross income per acre is Rs 4000 and cost of
pesticide spray is Rs 750 per acre. The pesticide is
sprayed on observing the occurrence of attack. If a wet
spell occurs, the attack is controlled naturally.

Two simple strategies that can be practised are (i) 1gnore
the occurrence or otherwise of the pest attack and never
spray the pesticide and (11} spray the pesticide as soon as
attack 1s noticed. We introduce a third ‘wait and see’ strat-
egy according to which a farmer waits for six days after
noticing the attack and sprays the pesticide only if rains
adequate for controlling the pest fail to occur till then.

Assumptions

Farmers sow groundnut during July to August as soon as
the fields receive adequate presowing tatns (0.5 cm in 7
days). Starting from sowing date, leal miner occurs
during plant age 35 to 75 days (peg formation phase) if
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