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Are chaotic particle trajectories
fractals?
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It is shown that chaotic particle trajectories in a
simple model of two superposed internal inertia-
gravity waves may come vnder the class of natural
fractals. The fractal dimension is estimated to lie be-
tween 1.2 and 1.5, depending on the strength of the
perturbation forcing introduced by the second wave.
The significance of the present result is that fractal
scaling behaviour of particle paths may arise even
before the Eulerian flow becomes turbulent. Impli-
cations of the results are discussed from theoretical
and experimental viewpoints.

MANDELBROT' raises the question whether or not the
transition to turbulence in fluids can be associated with
the circumstances under which the fluid particle trajec-
tory is a fractal. Richardson® was also intrigued about
whether 1t would become necessary to describe the po-
siton of an air parucle in the atmosphere by something
rather like Weierstrass’s continuous, nondifferentiable
tunction. In the last decade, it was appreciated that en-
hanced mixing, which is reminiscent of a symptom of
Eulerian turbulence, could arise in simple and regular
(1.e. non-turbulent in the Eulerian sense) fluid flows
purely through dynamical chaos which arises in nonlin-
ear systems™. This phenomenon is now widely known
as ‘chaotic advection’ or ‘Lagrangian turbulence’. We
investigate whether chaotic fluid particle trajectories in
Lagrangian turbulence exhibit fractal scaling behaviour.
QOur study is motivaled by an experimental indication
from oceanography that the Lagrangian trajectories of
ocean drifters placed in the surface layer of the
Kuroshio extension display a fractal dimension of ap-
proximately 1.3, within a range of space and time scales
usually attributed to geophysical fluid dynamical turbu-
lence”.

Let us briefly mention the idea of chaotic advection.
Suppose that there is a given velocity field V(X, 1) in
an incompressible fluid at position X at time ¢, this so-
lution of the Eulerian equations having been already
obtained. The equations for the Lagrangian motion of
passive fluid particles in an incompressible fluid are of
the form

X ovix. o, (1)
dt

where V-V =0 and X € R°. In general, V in eq. (1) is
a nonlinear function of X and t. Our present understand-
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ing of the theory of dynamical systems suggests that
solutions to equations of the form (1), if effectively de-
fined in N°, may typically exhibit chaos which is charac-
terized by exponential divergence of nearby trajectories.
This is true even for time-periodic, two-dimensional
(2D) flows and spatially-periodic steady three-
dimenstonal (3D) flows.

A fractal 1s a geometrical object whose shape is ir-
regular and/or fragmented at all scales. Mathematically,
a fractal is defined as a set for which the Hausdorff-
Besicovitch dimenston (or fractal dimension D) strictly
exceeds the topological dimension Dt which is
always an integer'. The value of D for a fractal curve
which lies on a 2D surface lies between the value of D+
for the curve (which is one) and the dimension of the
surface (which is two). A basic characteristic of fractal
curves 1s their ‘scaling’ behaviour. Scaling implies that
every part of the curve is in some sense a reduced ver-
sion of the whole curve. We defer the discussion of the
method to obtain scaling iaws to the next section. At this
point, 1t 1s also necessary to distinguish between
‘mathematical’ fractals as opposed to ‘natural’ fractals.
In the study of mathematical fractals, the scaling prop-
erties are assumed to hold good on the entire spectrum
of time or space scales. In the case of natural fractals,
which are encountered in nature and are of primary con-
cern in this study, small- and large-scale constraints
usually confine the scaling properties to a finite range of
scales.

The model system used in this study is an idealized
flow induced by two superposed, vertically trapped, in-
ternal inertia-gravity waves (IGWs) in the atmosphere
which was shown in an earlier paper by Joseph® to ex-
hibit chaotic particle paths. In that study, linearized so-
lutions for vertically trapped, horizontally propagating

- IGWs were obtained for a continuously stratified, in-

compressible, 1nviscid, isentropic and rotating fluid,
with uniform buoyancy frequency (see ref. 7 for expla-
nations). The basic state was one of a motionless fluid in
hydrostatic equilibrium. The velocity field correspond-
ing to a single IGW was found to be incapable of pro-
ducing chaotic particle paths. However, when two IGWs
with different wave numbers were superposed, numeri-
cal evidence suggested that the resulting velocity field
was sufficient to produce chaotic particle paths in some
regions of the flow domain. Let us denote the super-
posed velocity field in the form

VX, )=V (X, 1)+ eVy(X, 1), (2)

where the subscripts 1 and 2 correspond to the first and
second wave, respectively, and € is a parameter denoting
the strength of the perturbation forcing introduced by
the second wave. After making a Galilean-type trans-
formation to reduce the propagating waves to rest, the
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advection equations governing the fluid particle trajec-
tories are of the form
dx

-5:(/4, cosx+ Bjcosy+ Csiny)cosz— D,

d .
"EI%=(A2COS)’+ BzCOSX+CQSlHI)CUSZ—D2} (3\)

d . . .
Ef— = (A;sin x + Bysin y)sin z.

For the expressions of the subscripted coefficients A, B,
C, D, and values of parameters, typical of the Earth’s
atmosphere, used in this study, the reader may refer to
ref. 6. The first and second waves have periods nearly
3 h and 7 h, respectively.

For a given initial condition (xy, yg, zo) at ¢ =1y, we
solve eq. (3) to get the particle’s position for any ¢ > t,
which constitute the trajectory of the particle parameter-
1zed in time. Since the wave is trapped in the vertical
direction, our primary concern is with the two time-
series corresponding to the x and y coordinates of the
particle’s position. A common procedure to determine
the fractal scaling behaviour is based on considering the
average absolute displacements in x and y directions,
(Ax(kAD) = {x(t + kAD) — x(D)I) and (Ay(kA1)) =
(ly(t + kAr) — y()I) where () denotes an appropriate
time-average for each k, the vertical bars indicate abso-
lute values, and the delay time kAr is an integer multiple
of the sampling time Ar (ref. 5). If

(Ax(kAn) = k"x (Ax(AL)),

(4)
(Ay(kAD) = K"y (Ay(AL)),

where the equality is in the sense of distributions, then
the time-series of particle’s positions are scaling func-
tions. Then, x(r) and y(¢) are said to be self-affine, sim-
ple (or mono) fractal signals with scaling exponents H,
and H, 1n x and y directions, respectively. For this case,
the graphs of (Ax(kAt)) and {(Ay(kA?)) versus k fall on
straight lines on a double logarithmic plot. The slope of this
line gives the value of the scaling exponent H. For self-
similar, isotropic monofractal curves, the scaling exponents
are the same (1.e. H, = H,). For self-similar monofractals on
a 2D surface, the fractal dimension is given by

D =mn[1/H, 2]. (3)

Hence for 0 < H < 1, the particle trajectory is a simple
fractal curve such that | < D < 2. Pure Browntan motion
corresponds to H = 1/2. For any other value of H, the
motion is called fractional Brownian motion (fBm)'.
The trace of an fBm is a nonstationary process and the
degree of nonstationarity depends on the value of H (ref.
€). As H increases, the dependence of the position at a
given instant on the position in the past also increases.
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Figure 1. Time-series of particle’s x and y coordinates. when
¢ =0.5. a, the original time-series, b, the detrended time-series.

In addition, the departure from the origin increases.
Thus, 1n effect the exploration of a given area decreases.
and the particle leaves the area sooner and the trace of
the motion becomes smoother.

First, we will present the results for a typical value of
£(=0.5), which was found to exhibit chaotic particle
paths in ref. 6. The sampling time-interval (Ar) for the
trajectory 1s 2000 s. Figure 1 a shows the x and y coor-
dinates of particle’s position as function of time, ob-
tained by solving eq. (1), with initial position at (0, 0,
0.2), using a Runge-Kutta method”. The motion of the
particle has been described in ref. 6 as a combination of
trapped helical and untrapped undulatory motions. Our
analysis is applied on the detrended time-series of par-
ticle’s position which is presented in Figure 14, The
removal of trend implies that we are studying the fluid
particle motions about the rectilinear trajectory gener-
ated by a constant mean flow. The scaling behaviour, in
both x and y directions, is evident from Figure 2 a for a
range of £k from about 2 to 200, which corresponds to a
time ranging from about 1 h to 4.6 days. The scaling
behaviour is strikingly similar in both x and v. This may
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Figure 2. Plot of (Ax(kAr)) and (Av(kAnN) versus k in double loga-
rithmic axes, for{a)e =0.5; () e =0.3; (¢} e = 0.7.

be reflecting the fact that the anisotropy introduced by
the rotation of the Earth is not strong enough to induce
significant differences in the scaling behaviour for the
zonal and meridional directions for the present model
system. The values of the scaling exponents obtlained are
H,=0.746 £ 0.006 and H,=0.779 £ 0.005, where the
indicated uncertaintics are the statistical errors of the
least square fits 1o the slopes estimated as the lcast-
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Figure 3. a, Plot of the fractal dimension (D) versus the perturba-
tion forcing parameter (£). b, Plot of scaling range as a function of
the perturbation forcing parameter (¢).

squares 95% confidence limits on the individual values
of the slope. The average of the scaling exponents in x
and y direction 1s approximately 0.76 which gives the
fractal dimension (D) as 1.32 from eq. (5). This result
indicates that the motion of the particle corresponds to
an fBm and the trajectory samples only a portion of the
x—y plane that is accessible to it.

Next, we examine whether any quantitative change
occurs 1if the value of £ 1s varied. Results of a similar
analysis, when € = 0.3 and ¢ = 0.7, are presented in Fig-
ure 2 b, ¢, respectively. A linear slope is evident, in both
cases, for k ranging from about 2 to 500 (which in real
time ts from about 1 h to 12 days). The values of H, and
H,, when ¢ = 0.3, are 0.748 £ 0.003 and 0.760 x 0.003,
respectively. An average value of H about 0.75 gives the
value of D to be 1.33. For the cas¢e when £ = 0.7, we
obtain the values of H, and H, as 0.801 £0.003 and
0.798 = 0.003, respectively. Now, the average of the
scaling exponents is 0.80 which results 1in a fractal dt-
mension of 1.25. The variation of D for different values
of £ 1s presented 1n Figure 3 a. For the nitial condition
chosen 1n this study, the trajectory becomes chaotic only
when € is increased to about 0.3. We notice that there 18

CURRENT SCIENCE, VOL, 73, NO. 10, 25 NOVEMBLER 1997



RESEARCH COMMUNICATIONS

no monotonic dependence of D on . The values of D lie
between 1.2 and 1.5, In Figure 3 b, the range over which
the scaling behaviour holds 1s shown as a function of &.

The lower cut-off 1s at 1 h for all the cases. The scaling -

range shows a threshold minimum for intermediate val-
ues of £. A deterministic explanation for the variation of
D and the scaling range might exist, but, 1t is not clear to
us at the moment. The 1nteresting aspect of this work 1s
the indication that {ractal scaling behaviour of fluid par-
ticle trajectories may occur even before the Eulerian
flow becomes turbulent. Wave motions are ubiquitous in
many branches of fluid dynamics. Even though our work
is a case study of IGWs, it 1s likely that similar results
could be found in different flow scenarios if the flow
fields are topologically equivalent.

Be that it may, we need to address the theoretical and
experimental implications of fractal scaling behaviour of
chaotic trajectories in fiuid flows. In contrast to the gen-
eral practice in the study of nonlinear dynamical sys-
tems, where the emphasis is on a higher dimensional
phase space (of Fourier modes), the present results are
obtained in the physical space of spatial variables. From
an experimental viewpoint, the determination of D in the
phase space is extremely difficult, whereas it 1s more
definitive in the physical space. The fundamental issue
here is whether given the fractal scaling behaviour can
we infer about the dynamical processes responsible for
the generation of this fractal behaviour? Unfortunately,
there is no clear answer to this question because by re-
stricting attention to the physical space rather than the
phase space, it is usually not possible to deduce dynami-
cal models uniquely.

In the context of dissipative systems, the fractal di-
mension of chaotic trajectories may be interpreted as an
estimate of the dimension of the chaotic attractor to
which the trajectory asymptotically approach and a
small value of D indicates that the underlying dynamics
is that of a low-order dynamical system. But, for incom-
pressible fluid flows such as the model considered In
this study, there cannot be any attractors and the above
interpretation is not generally valid. However, it may be
noted that the present model velocity field 1s horizon-
tally divergent and this may contribute to the fractal
nature of trajectories observed on the x-y plane. Ben-
netin et al.'® has pointed out that an apparent fractal
dimension which is smaller than the available phase
space dimension can occur in Hamiltoman systems as a
transient phenomenon. It is likely that this transient
process also contributes to the value of D observed 1in
the present study. Again, a small value of D for an ex-
perimentally observed trajectory does not, by itself, un-
ambiguously identify that the underlying dynamics
(Eulerian) is that of a low-order system. For example, a
nonlinecar Hamiltonian model simulating 2D turbulence
(thus, includes a large number of wave-componcents) can

CURRENT SCIENCE, VOL.. 73, NO. 10, 25 NOVEMBER 1997

also result in small values of D (nearly 4/3) as shown by
Osborne and Caponio''. Given an experimentally ob-
served trajectory, following a method described by
Brown and Smith'?, it is possible to obtain the fraction
of energy contained on average in the n largest modes as
a function of » from the spectrum of the trajectory co-
variance matrix. The application of this method to sub-
merged float trajectories in the North Atlantic Ocean
suggested that the underlying dynamics is that of a low-
order system. However, differences between float, 2-
mode, 32-mode, and random-walk simulated trajectory
results were found to be very small. Therefore, what one
could say 1s that simple dynamical models could be
constructed tn such a way that their outcome is statisti-
cally the same, up to some level of approximation, as
the measured results. The present situation is similar to
a problem encountered in the study of turbulence. There
1s experimental evidence to suggest that several aspects
of fully-developed turbulence (such as interfaces, con-
stant-property surfaces, dissipative structures, etc.) are
fractals'>'*, It is not clear how, given the fractal dimen-
sions of several of its facets, one can solve the inverse
problem of reconstructing the turbulent flow itself. The
fact that certain experimental data exhibit fractal scaling
propertics over a finite range of scales is an important
result. It is likely that the basic dymamical processes
active 1n the flow are responsible for the scaling range.
It 1s a major challenge for future theoretical and experi-
mental studies to relate the fractal properties to the ac-
tual dynamical processes and to explore the origin of the
finiteness of the scaling range.

The mathematical notion of fractal dimension in
physical space is useful in the context of certain practi-
cally important physical processes such as mixing and
transport 1n fluid flows. Mixing in real flows 1s gov-
erned by an interplay between advective transport by the
velocity field and molecular diffusion. For short times of
practical interest, advection usually dominates the trans-
port process. Transport in fluid flows 1s often character-
ized by the variance of the displacemcnt of a particle
distribution given by

o2(t) = im{(x(1) — {x(t)))*) ~ 7.

[—oo

Enhanced normal (or Brownian) diffuston (y = 1) results
from particle trajectorics which, like the Brownian mo-
tion, can be trecated as a random walk, but with signifi-
cantly enhanced transport rates. Random walk prediction
with a finite sccond moment gives normal diffusive
ransport by the Central Limut Theorem. However,
transport in several flows with both persistent vortices
and coherent jets is reported to be ‘anomalous’ (with
y > 1) In cxpcrimumzi”'m as well as in simple 2D models
of chaotic advection' ™% Anomalous diffusion resulis
from a competition between sticking events inside o
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ncar persistent vortices and long distance flight events
in the jet regions. Lévy random walk models, character-
ized by power law probability distribution functions for
flicht lengths and times, lead to transport process which
is superdiffusive with y > 1 (refs 21--23). Lévy flights
have the interesting property that the mean square dis-
placement per step diverges and the set of sites visited
by the walk 15 a fractal”!. Hence, experimental observa-
tion of fractal particle trajectories gives an indication
that the transport process may be of the anomalous type.
It is worthwhile to note here that weakly turbulent flow
in rotating annulus experiments by Weeks et al.'® re-
sulted in normal diffusion. Pasmanter'’ also showed that
it is only in the limit that the chaotic region occupies all
the space, transport is of the Brownian type. Then,
chaotic paths can cover all the available space and D
would approach 2. Moreover, 1t is reported in ref. 16
that theoretical prediction by 1. Mezic and S. Wiggins
(unpublished) for turbulent flows is also normal diftu-
sion (at time scales large compared to the eddy turnover
times). If the above results are generally valid, the ex-
perimental observations of fractal trajectories have a
wider implication for our understanding about transport
phenomena in fluid flows. A fractal dimension less than
2 may indicate that transport is mainly due to advective
chaos in a non-turbulent flow field 1in which regular and
chaotic regions coexist to produce sticking and flight
events. In contrast, a fractal dimension of 2 (typical of
Brownian motion) in a planar tlow may suggest that the
flow is either uniformly chaotic or 1s approaching a tur-
bulent regime. The above scenario, in which advective
chaos plays the role of a transitional regime, also pro-
vides a smooth variation for D from 1 (in laminar re-
gime) to 2 (in turbulent regime) as plausibly demanded
by continuity requirements,

A close analogy to the above heuristic arguments
holds good for the model system considered in this
study as well. In ref. 6, it was shown that chaotic trajec-
tories undergo a combination of trapped helical motions
in the vicinity of regular toroidal region and long dis-
tance jumps in an open undulatory flow region. By re-
leasing clouds of particles in the chaotic region,
transport was found to be anomalous with ¥ ranging
from about 1.6 to 2.7, depending on the value of the
perturbation forcing parameter £ and the initial position
of the cloud release. However, a direct comparison with
theoretical predictions is premature at the moment. For
this, Lévy random walks need to be generalized for
higher dimensional embedding space taking into account
the anisotropy introduced by stratification and rotation

which are avenucs for future work. It is anticipated that
the study of Lévy walks will become more and more
important in the coming years for a better understanding
of transport phenomena in geophysical flows,
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