"Mis-governance of the bio-sphere and rapacious bio-mining by unaccountable corporate dictators over the years has been the root cause of their present plight. They must democratize bio-governance and reform their antiquated IP laws in this arena so that benign technologies and ethical practices can be transferred to them from such bio-rich countries as India," said a CEO of a farmers' co-operative in Gujarat now investing abroad in Israel and other countries. Further, the bio-poor countries also need to strengthen and update their archaic patent laws to bring them in line with ethical conduct and to disallow rampant biopiracy. A patent expert from another bio-rich country said the US must recognize foreign prior art. Patents are supposed to satisfy three criteria — of novelty, non-obviousness and utility. Novelty implies that the innovation must be new. It cannot be part of 'prior art' or existing knowledge. Non-obviousness implies that someone familiar in the art should not be able to achieve the same step. Most patents based on mis-appropriation of prior bio-knowledge violate the criteria of novelty read with non-obviousness because they range from direct piracy to minor tinkering which involves obvious steps to anyone trained in the techniques and disciplines involved.

According to many natural-product chemists in India and abroad, the precedents of the turmeric and neem cases should be used by India to require the World Trade Organisation (WTO) to 'outlaw bio-piracy by such bio-poor countries as the US'.

Physics of melts*

One of the most fundamental geodynamic processes to which can be traced a host of planetary structures and phenomena, each in its turn, central to several sub-disciplines of earth and planetary sciences, is mediated by rock melting in planetary interiors and the subsequent deformation and relative movement of the melt and the matrix (two-phase flow). Earth scientists have long been aware of the implication of this process to the extent and composition of continental and sea floor volcanism that create the basic layout of the earth's surface. However, not much progress could be made until the mid-eighties in using the knowledge of the volcanic features of the globe (Deccan, Hawaii, Iceland, Indian Ocean) delineated from their geophysical (gravity and bathymetry/topography and seismics) and geochemical (trace element distribution) signatures to obtain the attendant conditions of their origin in terms of quantitave thermodynamical parameters, because of the difficulty in describing the fluid mechanical behaviour of the matrix and of the melt fraction separating from it.

A distinct advance in tackling this problem was made by Dan McKenzie of Cambridge who provided a basic mathematical framework constituted by four conservation principles: the conservation equations of mass, momentum, energy and of atomic species. These equations, however, are quite complicated especially the energy equation. For, it contains terms that account for the latent heat of melting, for the heat transport by the separate movement of the melt and the matrix, and for the heat generation by their deformation. Their complete solution is therefore not yet available. Yet, much enlightening insight can be gained by analysing their solutions under simplified conditions as in many a fluid dynamical problem. Specifically for example, the assumption of isentropic melting produced by upwelling, which is believed to be valid for the mantle both under the ridge axes and intraplate volcanoes, leads to fairly accurate estimates of the melt fraction generated during upwelling and of the volume of magma that would then erupt at the surface. Thus, proceeding from first principles, McKenzie and his colleagues showed how an oceanic crust of the observed thickness (7–8 km) would result from the partial melting of a mantle whose mean temperature is 1350°C and how localized hot jets with temperature of 1550°C can generate just the right amount of melt needed to produce the Hawaiian ridge, or how the trace element concentrations can provide constraints on the relative movements between the matrix and the separating melt.

Indeed, this approach has many other fruitful applications to the solution of a variety of important terrestrial processes involving two-phase flow, notably the movements of fluids during crustal metamorphism and in fluidized beds leading to mineral concentration and hydrocarbon migration, as well as environmental modification by dispersion and differential transport of solutes and suspended materials.

These exciting possibilities of understanding crucial earth processes through a more basic approach of mixed phase liquid flow have, in turn, spurred fruitful interdisciplinary collaboration between a few geophysicists, geochemists and fluid dynamicists towards developing a quantitative framework for studying geological phenomena of a remarkably fluid-like earth. Herbert Huppert (DAMTP, Cambridge) recently coined the word 'geological fluid dynamics' to underline the fact that the ideas of continuum and fluid dynamics are central to understanding almost every aspect of the earth. The Cambridge University graduate programme in Earth Sciences now has a core course in this subject, and a debate on the implications of this step to the content and structure of other geological courses has already begun.

A discussion meeting on 'Physics of Melts' was accordingly planned in April this year during the visit of Dan McKenzie to Bangalore as Raman Professor of the Indian Academy of Sciences. It was felt that an approach to the new quantitative culture in earth sciences could be quite effective if it is launched from a somewhat familiar ground notably, the physicochemical aspects of rock melting which, however qualitative, form a basic element of research in igneous petrology, and expose the expressive power of this paradigm for studies in hydrology, sediment compaction and hydrocarbon for-

mation which keen scientists would not fail to notice.

Seventeen scientists, mostly young researchers and academics from the areas of petrology, isotope geochemistry and geophysics, selected after a wide consultation, attended the discussion meeting.

The meeting comprised of eight sessions including a final brainstorming session to discuss future initiatives—individual as well as national. Each of the other sessions began with a long exposition by Dan McKenzie—the first two on the mathematical formulation of the problem starting with the basic conservation principles through the concepts of scaling and dimensionless numbers and laboratory experiments, and drawing heavily from geological phenomena involving two-phase flow both at high Reynolds’ number (aerosol and sediment transport, crystallization of magma, etc.) as well as low Reynolds’ number (hydrology, sediment compaction, reservoir engineering and oil extraction). These sessions were of tutorial nature with active involvement of participants using both the lecture and the discussion mode.

The remaining six sessions also began with actual case analysis by McKenzie, of the Hawaiian and Icelandic volcanism and several other applications of the solution of conservation equations to special cases. In the latter part of the session, participants joined in drawing analogies with their own research problems and articulating new strategies and approaches.

The principal gain made by this discussion meeting was in terms of new intellectual insights in formulating geological problems quantitatively and with the possibility of testing hypotheses, and above all, a certain confidence in using the fluid dynamical approach. In fact, an overwhelming opinion voiced at the concluding session was that it would be highly desirable to re-examine earth science curricula in the country from this new viewpoint and introduce the subject of geological fluid dynamics in the core programme.

V. K. Gaur, Indian Institute of Astrophysics, Koramangala, Bangalore 560 034, India.

RESEARCH NEWS

Supernova 1987A: Ten years after

Bhaskar Datta

Supernovae are gigantic explosions of stars in which millions of tons of hot gas and debris are released. Such an event at its maximum brightness may outshine the entire galaxy in which it appears, and can be one of the most spectacular sights in the sky. Most supernovae appear faint because of enormous distances separating them from us. However, if one erupts in our galaxy or a nearby galaxy, it may be possible to see it with the naked eye. Five naked-eye supernovae were recorded between AD 1006 and 1604. After a long gap of 383 years since the last one, a supernova event that could be seen with the naked eye took place a decade ago. It was first observed by Ian Shelton from Las Campanas in Chile on 24 February 1987, and was located at a distance of 17,000 light years in the Large Megallinic Clouds in the southern sky. The Large Megallinic Clouds are a bunch of small, irregular galaxies that are companions to our own Milky Way galaxy. Photographs of the sky area where the eruption took place, taken some years previously, revealed a star at the location of the supernova. Catalogued as Sanduleak-69°202, it was a very hot, blue supergiant star about fifteen times more massive than the sun and about fifty times larger in diameter.

How does a star like Sanduleak-69°202 get to become a supernova? According to the standard theory of stellar evolution, the initial stages of energy production in stars is due to thermonuclear reactions that fuse hydrogen nuclei into nuclei of helium with atomic number four. In these reactions, there is a net mass loss which reappears as an enormous amount of energy as per the famous mass-energy conversion rule given by Albert Einstein. Enormous amounts of light and heat can be manufactured by this process. The nuclear reactions that convert hydrogen to helium can occur in two ways. One process, the proton–proton chain, is a set of three reactions that are efficient at temperatures below about 16 million degrees Kelvin. The other, more efficient at temperatures higher than this, is a more complex set of six different nuclear reactions called the CNO cycle involving carbon, nitrogen and oxygen. In the interior of the sun where the temperature is about 15 million degrees Kelvin, the proton–proton chain produces ninety percent of the energy and the rest is due to the CNO cycle. As the supply of hydrogen as fuel gets diminished, there is no longer enough pressure that was generated by the heat of the reactions to counter the inward pressure of gravitation. As a result, the core of the star will collapse under its own weight. This process will heat the core and its overlying layers. Hydrogen will then burn in a shell surrounding the core and another round of thermonuclear reactions, that fuse the helium nuclei into the nuclei of carbon and oxygen, will be triggered in the core. If the star is a massive one, like Sanduleak-69°202, then after the helium burning is over the weight of the outer layers can be sufficient to force the core consisting of carbon and oxygen to contract. Once again, this will lead to a heating of the core and the overlying layers. Now the scenario will be as follows. Helium burning will commence in a shell surrounding the carbon–oxygen core, and beyond this shell there will be another shell in which hydrogen conversion to helium takes place. The carbon–oxygen core will continue to contract till it becomes hot enough to trigger the next round of thermonuclear reactions that will fuse the carbon nuclei into the nuclei of neon, oxygen, sodium and magnesium.