14C in air over the Arabian Sea

R. Bhushan, S. Krishnaswami and B. L. K. Somayajulu
Physical Research Laboratory, Ahmedabad 380 009, India

Global monitoring of radiocarbon in atmospheric CO2 began during the mid-fifties to determine the time scales of exchange of radiocarbon (and CO2) between the atmosphere and other terrestrial reservoirs. The distribution of natural radiocarbon in the environment was perturbed significantly during the 1960s through injection of 14C from nuclear weapon tests. This 'bomb 14C' has proved to be an excellent tracer to characterize and quantify CO2 exchange between various reservoirs. We have measured radiocarbon activity of marine air over the central and eastern Arabian sea during 1993-95. The mean Δ14C values are 121 ± 6, 116 ± 6 and 105 ± 5‰ respectively for these three years. These values, in conjunction with those reported in the literature for troposphere for the decades of 60s through 80s, show that the 14C activity in the tropospheric air has been decreasing exponentially with an e-folding time of ~16 years.

Cosmic ray-produced carbon-14 (half life = 5730 yr) is one of the commonly used geochronometers for dating events of the late Pleistocene12. Its production by the interaction of neutrons with atmospheric 14N and its distribution among the various reservoirs of the earth, oceans, biosphere and atmosphere, is fairly well known3,4,6. It has been used successfully to determine the time scales of exchange of carbon between various earth surface reservoirs5. However, nuclear weapon tests9, conducted during the late fifties and early sixties, resulted in the injection of considerable amounts of 14C into the environment which increased its inventory in the atmosphere by about factor of two8,12. Though this has significantly perturbed the steady-state distribution of natural radiocarbon (i.e. cosmic ray produced) in the environment, it provided an additional means to assess more precisely the time scales of various processes associated with carbon exchange. The bomb radiocarbon activity in the atmosphere has been decreasing with time because of its exchange with other reservoirs. The measurements of atmospheric 14C activity, begun in the early 1950s (ref. 13) have continued, at some location or the other over globe, during the past four decades. These measurements have provided valuable data on the rates of CO2 exchange among various reservoirs24. In India, atmospheric 14C measurements were made at a few stations, Gulmarg (34°N), Bombay (19°N) and Kodai-kanal (~10°N) during 1963 and 1964 (ref. 8). As a part of our programme on studies of water circulation in seas around India using 14C, atmospheric air was also sampled during the cruises, to measure its 14C activity, the results of which are reported in this paper.

Atmospheric CO2 samples were collected during three cruises, SK-83 in 1993 on board ORV Sagar Kanya, and in 1994 and 1995 on board FORV Sagar Sampada (see Figure 1 for sampling locations). All the three cruises were conducted during January-May. Atmospheric air was purged at the rate of 4-6 l/min through two 500 ml plastic bottles, each containing 250 ml of 2 N NaOH, using a small greaseless and oil-free air compressor when the ship was cruising. The NaOH solutions were sealed and brought to the laboratory and processed for their 14C activity. The measurements were made within ~1 yr of collection. Typically 2–6 litres of CO2 was recovered from each sample. A blank run of 250 ml of 2 N NaOH stored in the same type of sampling bottles for a period of one year, yielded 10 ml CO2, which is <0.5% of the sample volume. The CO2 was converted to benzene following conventional procedures using a TASK benzene synthesizer. The 14C activity in the benzene sample was analysed using a Packard Liquid Scintillation Counting System14. The system has a background count rate of 1.15 ± 0.01 counts per minute (cpm)14. This compares with sample count rates which ranged from 8.3 to 21.2 cpm. A small aliquot of the liberated CO2 was used for δ13C measurements15.

The δ13C values, in the trapped CO2, ranged between ~8.0 and ~18.0‰, similar to or lower than that in atmospheric CO2 (~7.7 to ~9.6‰)16. The lower values are suggestive of fractionation during the trapping process. Some of the earlier measurements, which were based on trapping of CO2 in Ba(OH)2 and NaOH solutions kept in open trays17-19, had also recorded similar low δ13C values. The Δ14C values (Table 1) are calculated from the measured δ13C and 14C activity based on standard equations17,18.

Figure 1. Cruise tracks in the Arabian Sea where CO2 sampling of air over sea surface was done. Some of the stations occupied during SS-132 (open circles) and SS-117 (solid triangles) overlap. The sampling was done during 1993-95 (Table 1).
RESEARCH COMMUNICATIONS

The locations of the samples along with their δ^{13}C and Δ^{14}C data are given in Table 1. The Δ^{14}C values of CO$_2$ in the air mass over the central and eastern Arabian Sea varied between 92%o and 135%o. The four samples collected during SK-83 from very close locations (Figure 1) have yielded Δ^{14}C values which are in excellent agreement with each other, attesting to the reliability of the sampling procedures and measurements. The range in the Δ^{14}C values, 104 to 135%o during SS-117 and 92 to 122%o during SS-132 (Table 1) was significantly more than the typical uncertainties in the measurements (±6%o). The cause for this scatter is unclear, but may arise from variations in the mixing proportions of different sources of CO$_2$. It is interesting to note that the lowest value measured, viz. 92 ± 7%o was in the sample A4 collected during the second week of May 1995 (Table 1), when strong premonsoonal winds prevailed and the sea state was at 6. Studies of geopotential anomaly in the south-west coast of India (south of 10°N) show that upwelling in this region starts by March, intensifies through May–June and decays by July. It is possible that upwelling which brings to surface cooler deeper waters with higher ΣCO$_2$ and lower Δ^{14}C may liberate CO$_2$ to the atmosphere, diluting the atmospheric Δ^{14}C. Rough calculation suggests that for a two-end member mixing, atmospheric CO$_2$ with Δ^{14}C ~ 110%o and oceanic CO$_2$ (upwelled from 200 m depth) with Δ^{14}C ~0%o, the fraction of oceanic CO$_2$ in the A4 sample would be ~ 15%. Earlier work on Δ^{14}C in atmospheric samples from the coastal station of Bombay showed that during August, Δ^{14}C values were 651 and 657%o, about 100–150%o lower compared to samples collected during November 1963 and 1964. Rozanski et al. have recently reported Δ^{14}C values as low as 90%o during Aug.–Nov. 1992 at the high altitude (~3000 m amsl) coastal equatorial Pacific station, Aychapich on Equador. These low values have been attributed to upwelling located in the eastern equatorial Pacific. The above hypothesis, though can be a likely explanation for the low Δ^{14}C of the A4 sample, the observation that during SK-83 sampling conducted during approximately the same time period as SS-132 (Table 1), did not have such low values, requires that the upwelling effects have to be very localized and time specific. Many more measurements are needed to validate this hypothesis and assess the role of upwelling in contributing to Δ^{14}C variations in the Arabian sea marine atmosphere.

The mean (arithmetic) Δ^{14}C measured in this study is plotted in Figure 2 (adapted from ref. 21), assuming that they represent the annual values for the years 1993–95. Figure 2 represents the temporal variation in atmospheric 14C since 1954 (refs 10, 22–27). The measurements during 1954 are prenuclear Δ^{14}C values, which increased to ~1000%o in the northern hemispheric troposphere and ~660%o in its southern counterpart due to injection of 14C by nuclear weapon tests conducted in the northern hemisphere between 1958 and 1963 (Figure 2). The 14C measurements of tropospheric CO$_2$ from various locations, including those of the present study, show a steady decrease that appears exponential (Figure 2). The minor perturbations in the exponentially decreasing trend of 14C activity are a result of small scale nuclear weapon tests. The decrease in the atmospheric bomb 14C results from its exchange with

| Table 1. 14C in surface air over the Arabian Sea |
|---|---|---|---|
| **Sample code** | **Location** | **From** | **To** | **δ^{13}C (%)** | **Δ^{14}C (%)** |
| **Cruise SK-83 (April–May 1993)** | | | | | |
| 83/A1 | Goa | 12°30'N 67°E | - | 124 ± 6 |
| 83/A2 | 12°30'N 67°E | 13°N 68°E | -15.1 | 119 ± 5 |
| 83/A3 | 13°N 68°E | 12°30'N 69°30'E | -15.3 | 119 ± 5 |
| 83/A4 | 13°N 68°E | 12°30'N 69°30'E | - | 121 ± 8 |
| Mean = | | | | 121 ± 6* |
| **Cruise SS-117 (January–February 1994)** | | | | | |
| 117/A1 | Cochin | 8°22'N 73°E | - | 104 ± 5 |
| 117/A2 | 8°22'N 73°E | 12°58'N 64°49'E | -16.4 | 135 ± 5 |
| 117/A3 | 12°58'N 64°49'E | 12°49'N 71°37'E | -14.6 | 109 ± 6 |
| Mean = | | | | 116 ± 6* |
| **Cruise SS-132 (April–May 1995)** | | | | | |
| 132/A1 | Cochin | 12°58'N 64°29'E | -11.5 | 101 ± 5 |
| 132/A2 | 12°58'N 64°29'E | 5°43'N 56°12'E | -18.0 | 122 ± 6 |
| 132/A3 | 5°43'N 56°12'E | 6°11'N 64°25'E | -8.0 | 104 ± 5 |
| 132/A4 | 6°11'N 64°25'E | Cochin | -8.2 | 92 ± 7 |
| Mean = | | | | 105 ± 6* |

*For these samples δ^{13}C was not measured, a value of ~15%o (mean of the four measured values during SK-83 and SS-117 cruises) is used to calculate Δ^{14}C.

Uncertainties given are the arithmetic mean of the standard deviations of individual measurements (±σ).
other terrestrial reservoirs, oceans and the biosphere. In addition to this exchange, a small but finite decrease in the atmospheric \(^{14}\text{C}\) also results from introduction of "dead \(\text{CO}_2\)" (Suess effect) to the atmosphere through fossil fuel burning.\(^{5,13,26-28}\). It is estimated that the rate of decrease of \(\Delta^{14}\text{C}\) in atmospheric \(\text{CO}_2\) due to Suess effect is about \(-6.8\%\) per decade since 1937. Other factors that contribute to \(\Delta^{14}\text{C}\) variations in the atmosphere are those connected with changes in \(^{14}\text{C}\) production due to cosmic rays, however, these changes during the past \(-50\) years are not significant, only \(-2\%\) in \(\Delta^{14}\text{C}\) (ref. 5).

The temporal variations in \(\Delta^{14}\text{C}\) data in the atmosphere (Figure 2) allows one to calculate its removal time scale. Based on the observation that the \(\Delta^{14}\text{C}\) decrease in the atmosphere follows an exponential trend (Figure 2), the mean-life or e-folding time for tropospheric radiocarbon is calculated to be \(-15.5\) years and \(-16.6\) years with respect to the base year 1963 and 1970 respectively after correcting for Suess effect, i.e. \(-0.68\%/\) per year (ref. 5, Table 2). The calculation is based on \(\Delta^{14}\text{C}\) values of 1000 and 550\%/ for 1963 and 1970 respectively, and assumes that the samples collected over the Arabian Sea during various periods (Table 1) represent the annual values for northern hemispheric air.

The difference in the e-folding time of \(~1\) yr when calculated with respect to 1963 and 1970 as base years, is attributed to incomplete mixing of radiocarbon between the two hemispheres for a few years after the bomb tests. A similar value of \(~17\) years was deduced by Manning et al.\(^{24}\) based on their data collected from New Zealand (south Pacific).

We report here the first measurements of radiocarbon in the air over the Arabian sea, covering a latitudinal range of \(6^\circ\text{N}-13^\circ\text{N}\) and longitude of \(56^\circ\text{E}-74^\circ\text{E}\). The data are consistent with those expected for the exponentially decreasing trend of bomb radiocarbon in the atmosphere and yield a value of \(~16\) years for mean residence time of radiocarbon in the tropospheric air. The data also show signatures of contribution of \(\text{CO}_2\) from the Arabian sea to the atmosphere during upwelling, but these need to be ascertained through more extensive measurements.

Luminescence chronology of seismites at Sumdo (Spiti valley) near Kaurik–Chango Fault, Northwestern Himalaya

D. Banerjee*, A. K. Singhvi* , T. N. Bagati and R. Mohindra*

*Earth Science Division, Physical Research Laboratory, Ahmedabad 380 009, India
*Sedimentology Group, Wadia Institute of Himalayan Geology, Dehra Dun 248 001, India

Soft sediment deformation structures (seismites) observed at eight stratigraphic levels in fluvo-lacustrine sediments exposed in the Sumdo area of lower Spiti valley, Himachal Pradesh, India have been interpreted to represent eight paleoearthquakes of magnitude > 6.5 on the Richter scale. We present the first attempt to date seismites using luminescence dating techniques. The infra-red stimulated luminescence ages range from 26 ka to 90 ka in samples from four seismites that were investigated. These ages suggest that the activation of Kaurik–Chango Fault and the seismic activity in the region dates back at least to the Late-Pleistocene.

The Himalaya is one of the active dynamic seismic regions of the world and is known for moderate to large magnitude earthquakes. The historical record of these earthquakes is too short to deduce their long-term recurrence intervals. An effort is currently under way to document the geological record of past seismic events in the Himalaya and establish their chronology so that the repeat frequency of large earthquakes can be established.

In the Sumdo region of the lower Spiti valley, a detailed soft sediment deformation study provided evidence for eight major earthquakes (magnitude > 6.5). In 1975, the Kinnaur Earthquake caused widespread damage, landslides and ground rupturing. These earthquakes have been correlated to the activation of the Kaurik–Chango Fault striking continuously from Kaurik (north) to Leò (south) across the Paleo–Proterozoic sequence. A correlation with 14C dated lacustrine records in the adjoining region suggests a Late Pleistocene–Holocene antiquity for these events. The deformation structures produced by seismic events are recorded in overbank/shallow-water sedimentary deposits and have been designated seismites by virtue of their similarity to other known occurrences of earthquake-induced sedimentary structures and by virtue of the lateral extent of their deformation. Earlier workers have also used such sediments to study the paleoseismic events.

Studies on the chronometry of paleoseismic events have been scanty, and have mostly depended on the radiocarbon dating of charcoal/wood associated with sediments. This method has a limited time range of application, and has difficulties in calibration and in establishing an unambiguous association between sample and strata. The method often provides unrealistic ages on account of the contamination by 'old' or 'modern' carbon. Recent advent of the applicability of trapped charge dating methods such as electron spin resonance dating, thermoluminescence (TL) and optically stimulated luminescence (OSL) have now enabled dating of a large variety of sequences associated with paleoseismic events. Thus the dating of fault gouge, buried soils that originated developed on colluvial debris and dating of unpaired river terraces have now made it possible to directly determine the timing of tectonic events. In this study we describe the first attempt of a direct dating of soft sediment deformation structures and hence, paleoearthquake events by infra-red stimulated luminescence (IRSL) and thermoluminescence (TL) dating techniques. These methods rely upon the fact that the luminescence signals (TL/IRSL) of minerals constituting the sediment are reset by a short duration of pre-depositional sun exposure. On burial, sun exposure ceases and a reaccumulation of luminescence is initiated through irradiation from ambient natural radioactivity (viz. 238U, 232Th and 40K). The luminescence age is expressed as

\[
\text{Age} = \frac{\text{Equivalent dose}}{\text{Annual dose}}
\]