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Even though mankind has been using
knots ever since the dawn of civiliza-
tion, the so-called theory of knots which
came into existence as a special branch
of three-dimensional topology is ap-
proximately only a hundred years old.
It had some reasonable initial develop-
ment followed by a slow growth for a
few years. And then, with its multifari-
ous applicability in other sciences, it
has grown so much and also growing
rapidly that today it can be treated as a
separate branch of Mathematics in its
own right.

All these days, anyone who wanted
to know what knot theory is always
started with the excellent, 1962 survey
article ‘A quick trip through knot
theory’ by R. H. Fox or with the book
Introduction to Knot Theory by Crowell
and Fox. However, even these two ex-
positions demanded quite a bit of prepa-
ration 1n algebraic topology and indul-
gence from the reader. For instance, the
knowledge of fundamental group and the
presentation of groups was very essen-
tial. Not so any more, The present vol-
ume by KM is a proof that anybody can
acquire a decent knowledge of a lot of
useful knot theory without much exper-
tise in algebraic topology. Today, if
somebody approached me for some
elementary knowledge of knot theory, I
can place KM’s book in her/his hands
without any hesitation.

Mathematically speaking a knot is
merely a smooth embedding of a circle in
the 3-dimensional Euclidean space. One
can project the entire knot onto a plane
to obtain a smooth curve with only fi-
nitely many points of overlaps. We can
also arrange this projection in such a
way that at each of these overlaps, only
two of the strands meet and they are
perpendicular to each other, By making
a small cut while drawing one of the two
strands at the meeting point, we indicate
which one lies underneath the other,
Such a projected plane figure is called a
regular knot projection.

The entire knot theory can be carried
out from studying such a regular knot
projection. Thus, many ideas and con-
cepts about knot theory can be under-
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stood by merely drawing appropriate
plane figure. Since we are not interested
in the actual length of the knot etc., it is
fairly obvious that we can introduce a
number of operations on the knot which
alter it considerably and yet treat it as
‘equivalent’ to the given knot. These
operations are called elementary knot
moves.

How far one can go on like this? KM
could come up with a whole neat volume
written in this style without much tech-
nicalities. He declares his intentions of
keeping the book totally devoid of all
clumsy technicalities and he has suc-
ceeded in it. The equivalence of knots,
sums of knots and prime knots, knot-
cobordism and slice knots, what it
means to construct knot tables, and the
fundamental problems of knot and link
theory are explained in the first three
chapters. The classical knot invariants
such as the minimum number of cross-
ings, the bridge number, unknotting
number, the linking number, colouring
number, etc. occupy the next chapter. It
all looks so soft so far. However, al-
ready, the author points out many open
problems which have defied solutions
for all these days.

In chapter 5, the theory comes to one
of the major turning points in its his-
tory. The Alexander polynomial has
played a very important role in the clas-
sification of knots. Classically, one in-
troduces this concept via the so-called
free differential calculus of the presenta-
tion of the knot-group or through cover-
ing spaces. This approach is quite tech-
nical and not surprisingly, KM avoids it
and introduces the Alexander polyno-
mial through the Seifert matrix. Thus
chapters five and six deal with Seifert
surfaces, s-equivalence and Alexander-
Conway polynomial, sighature of a knot
and 1ts usefulness in detecting chirality
of knots. The author does not forget to
point out the efficiency of Conway’s
method in making the Alexander polyno-
mial more computer-friendly. It is re-
marked that this is a case of technology
catching up with the mathematical
theory.,

Chapter 7 contains a satisfactory
classification of those knots which can
be drawn on the surface of a standard
{orus.

in chapter 9, the author comes up
with another tmportant step 1n the de-
velopment of knot theory, again due to
Conway, viz. the theory of tangles. The
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next logical step is the study of braids
and the relation with the knots and
links. An important theoretical result
here is Markov’s theorem. It says how
two different braids arising from the
same knot are related, viz. by the so-
called M-equivalence.

We are naturally led towards the great
revolution — the Jones Polynomial,
serendipitously discovered by V. F.
Jones in 1984. An important aspect of
the Jones polynomial and its subsequent
offshoots is in the fact that they have
unlocked connection of knot theory with
various applicable disciplines. Of
course, it 1s not necessary to go through
the same route as Jones took via the
study of operator algebras to understand
Jones polynomial. One has to merely
axiomatize the skein relations and that is
what is done in chapter 11. After dis-
cussing the basic properties of the Jones
polynomial, KM already includes open
problems. For example, it is not known
whether there exists any non trivial knot
with its Jones polynomial equal to 1.
The chapter includes discussion of some
of the other offshoots such as the
HOMFLY polynomial, the Kauffman's
polynomial, etc. It concludes with
proofs of three of Tait’s conjectures
about alternating knots.

The next three chapters treat relation
of knot theory in three applicable disci-
plines — the statistical mechanics, mo-
lecular biology and chemistry. These
chapters are useful to people working in
either areas.

The last chapter treats the most mod-
ern concept in knot theory — Vasileiv in-
variants., Indeed, these invariants are as-
signed to even a wider class of objects,
viz. singular knots and as such they are
more - powerful than all the invanants
considered so far. However, it 1s not
known whether Vassileiv invariants form
a complete set of invariants for a knot.
Examples of knots not distinguishable
by any given finite set of Vasstleiv in-
variants are included.

The book contains two tables, one
giving knots up to eight crossings and
the¢ other containing Alexander and
Jones polynomials for these Knots,
Notes containing eighteen footnotes is
included. As the author points out the
bibliography is strictly for the work re-
ferred in the body of the book, other red-
erences on the subject can be oblained
from these sources 11 turm.

It goes without saying that, one could

345



BOOK REVIEWS

—

not have given proofs of many resuits,
with such a self-imposed restriction of
avoiding technical details. Nevertheless,
the author has done a very good job, the
only exception being chapter 8, in which
the author attempts to outline aspects
which are more topological in nature
such as the Dehn’s surgery, branched
coverings, etc. A typical exercise in this
chapter asks the reader to show that the
torus is not a covering space of a 2-di-
mensional sphere. One fails to under-
stand the kind of audience the author
may have in mind, in including such ex-
ercises immediately after giving the defi-
nition of a covering space. The book
can do well without these eighteen
pages. This book is translation of the
original Japanese version. Even though |
do not know Japanese, I feel that there
is a lot of scope for an 1mprovement in
the translation.

Although this book may not impart
any lasting education in knot theory to
the reader, it will not fail to insptre and
inform substantially. With so many re-
sults in one single place, it may be used
as a good reference book also.
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Lysozymes: Model Enzymes in Bio-
chemisiry and Biology. P. Jolles, ed.
Birkhduser Verlag, Basel, Switzerland, 1996.
449 pages,

Fleming's discovery of lysozyme pre-
ceded his discovery of penicillin and
both are part of scientific folklore. It
was in 1922 that Alexander Fleming re-
ported his discovery of lysozyme in the
nasal mucous to the Royal Society.
However, when the word lysozyme is
currently used, it generally means the
enzyme from hen egg white (HEW).
Pierre Jolles, who sequenced the HEW
enzyme in the early sixties, has been
working with lysozymes from various
sources and has now put together this
comprehensive book on this enzymatic
activity.

Lysozyme is widespread in nature.
By definition, lysozyme activity con-
sists of hydrolysis of a B-glycosidic
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bond between the C-1 of N-acetyl-
muramic acid and the C—4 of N- acetyl-
glucosamine of the bacterial peptido-
glycan. Analysis of known 75 complete
and 13 partial amino acid sequences
shows that there are 20 invariant
residues. In addition to conventional
lysozyme (called lysozyme ¢ for
chicken type or conventional type),
other distinct types of lysozymes also
occur. Lysozyme g (after the Embden
goose, the specie in whose egg white it
was first discovered) is also widespread,
though in bird egg white only. Some
lysozyme ¢, notably from pigeon egg
and horse milk have few aspartic acid
residues critically positioned, enabling
them to bind calcium and are called cal-
cium-binding lysozyme c¢. The two
lysozyme ¢ families along with -
lactalbumin form a lysozyme ¢ super-
family. Evolutionary analysis points to
a common ancestor and places the diver-
gence event prior to 400 million years.
The question whether lysozyme g also
shares the common ancestor 1s still de-
batable. However, v-type lysozymes
(viral type from phage infecting both
gram-positive and gram-negative bacte-
ria), omr the basis of similarities between
their three-dimensional structures with
lysozyme ¢, are believed to share this
remote commaon ancestor.

Several other phage lysozymes en-
coded by phages infecting gram-positive
bacteria called CH-type lysozyme (first
investigated 1n Chaloropsis) belong to a
totally unrelated family. A striking ob-
servation which emerges out of these
evolutionary studies is that only acid ca-
talysis seems to be essential, the rest of
the catalytic process 1s based upon
‘broadly scattered interactions (electro-
static, H-bonding, . . .) and substrate
distortions’ (p. 58).

The role of lysozyme in bacterial cell
wall lysis was elucidated only in 1564.
‘An intriguing question, not yet an-
swered, is how the cell controls this
dangerous enzyme from premature or
unbalanced action. . . although it is clear
that they are involved in the metabolism
of bacterial cell wall’ (p. 63). Equally
fascinating is their presence in plants.
‘All lysozymes also have chitinase ac-
tivity but not all plant chitinases are
lysozymes. However, for many chitin-
ases, it 15 not known whether they also
possess lysozyme activity’ (p. 75). As
fungal cell walls contain chitin, it is be-
lieved that chitinase activity is used by

plants to combat fungal pathogen.

Lysozyme (c-type) is ubiquitous in

insects, normally present in blood. In
this context, the role of lysozyme as an
active defence maolecule has been ques-

ttoned, since in most bacteria, the

peptidoglycan layer is not directly ac-
cessible to this enzyme. It may be that
the main role of the enzyme is in cell

wall lysis after the bacterium has been
killed.

Both in flies and cows, lysozyme
also has a digestive role. Whereas typi-

cal lysozymes are basic, ruminant en-

zymes are neutral and Drosophila
midgut lysozymes are even acidic.

Thus this book, consisting of
twenty-two chapters, looks at lyso-
zymes from the perspective of protein
chemistry, enzymology, protein cry-
stallography, motecular biology, immu-
nology and pharmacological and thera-
peutic applications. The authors, drawn
from various parts of the world, repre-
sent a unique wealth of experience.

An attractive feature of this book is
that it also captures a sense of history
of the growth of ideas. McKenzie's
recall of editonal opposition to
Campbell’s opinion that ‘c-lactalbumin
may have evolved by gradual modifica-
tion from lysozyme’ is a case in point
(p. 365). The lucid discussion on the
catalytic mechanism by Karplus and
Post nicely illustrates the usefulness of
theoretical methods in establishing en-
zyme mechanism. As few biochemists
are familiar with the area of molecular
dynamics, the tanclusion of this chapter
is welcome.

* Analysis of formation of disulfide
bonds in this enzyme shows that there
exists a restricted search of structures
and a nucleation in the folding pathway.
‘Folding of both denatured and dena-
tured/reduced lysozyme is characterized
by transient folding species possessing
structural properties of the molten glob-
ule state: high content of secondary
structure, no tertiary fold and appear-
ance of hydrophobic structures’ (p.
144). Imoto has described protein engi-
neering work on c-type lysozyme (p.
163 onwards). Although references to
the work on T4 lysozyme by Mathew’s
group have been provided, a little more
extensive discussion on the latter would
have been welcome., Also missing is the
early chemical modification with the en-
zZyme,

HEW lysozyme was the first enzyme
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