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A general regression neural network model with dif-
ferent processing elements (PE) fits the observed
electroencephalogram signals (EEG) of the human
brain during awake, sleep and rapid eye movement
(REM) stages. The number of PEs required for
simulation could be an indication of the complexity
of the EEG pattern. About 6.5 times more PLEs are
required to simulate the signal during alert eyes
open (B waves) than alert eyes closed (ot waves)
stage. Also, half the number of PEs are required to
simulate sleep stage 4 when compared to simulating
sleep stage 2. REM sleep requires more number of
PLEs to simulate than sleep stage 4. PEs required to
simulate short duration ‘petit mal’ epileptic seizure
less than those required to simulate B waves, but
more than those required to simulate REM state. In
most cases a correlation exists between the number
of PEs and the fractal dimension,

THE neuron is the fundamental cellular unit of the nerv-
ous system and, especially the human brain. The central
nervous system 1s a neural network of about 10" neu-
rons, all of them interconnected 1n the form of a dense
matrix. The neocortex is under the influence of external
stimult as well as input from subcortical areas. The axon
or the output path of a neuron splits up and connects to
dendrites or input paths of other neurons through a
junction known as a synapse. The electrical activity of
the brain is routinely measured from the scalp and ana-
lysed for abnormalities. It is used in the search for sleep
disorders.

Electroencephalogram (EEG) is related to the firing
pattern of the neurons in the neighbourhood of the cere-
bral cortex. Cells continuously receive pulses, especially
at dendrites, from other neighbouring neurons. The
pulses are transmitted at synapses. Certain incoming
pulses generate excitatory waves, while others generate
inhibitory waves of electric current in the recipients.
These dendritic currents are fed through the cell body to
a region at the start of the axon. These currents enter the
extracellular space after crossing the cell membrane.
The cell calculates the ovcerall strength of the currents,
which is indicated by changes in voltage across the
membrane, by adding all the excitatory and subtracting
all the inhibitory currents, If the sum is above a thresh-
old value then the neuron fires (i.c. an output from the
neuron is generated). Although the activity of real neu-
rons is very complex what is described above 18 an over-
simplification of the process of synaptic integration,
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The mechanism producing each EEG tracing sums up
the currents inttiated at the dendrites. The tracing shows
the excilatory stale of group of neurons rather than of
individual neurons, because the extracellular space is
criss-crossed by currents from thousands of cells'. EEG
tracings of hiving beings generally oscillate and are very
irrcgular, but nevertheless follow a pattern. They may
have a high-{requency component superimposed on low-
frequency signals. Recent progress in the theory of non-
linear dynamical systems has provided new methods for
the study of EEG time series data. Global properties of
the brain EEG patterns at various stages of activity and
Inactivity, are being analysed using the theory of chaos,
Lyapunov exponent, auto-correlation function, power
spectra and fractal dimension®™. Activity of a small
subset of neurons in the presence and absence of a
synchronized oscillatory signal is modelled using
differential equations and the results analysed using

spatial auto-correlation function and correlation dimen-

sion”.

Neural network computer programs try to simulate
neuronal activity. In an artificial neural network, the
unit analogous to the biological neuron is referred to as
a processing clement (PE)*’. In spite of the fact that
simple interconnected networks do not completely
simulate the dynamic properties of real neurons, they are
useful in gaining insight into universal principles of
distributed systems. Also, a trained network has striking
similarities to actual neurons and can suggest functional
roles of neurons with input and output that are hard to
grasp intuitively. Back propagation network has been
used to process chaotic EEG signalss.

A neural network consists of many processing ele-
ments joined together through connection weights which
correspond to the synaptic strength of neural connec-
tions. Data to the network is presented at input layer and
the response of the network to the given data is stored In
the output layer. It is speculated that the training or
earning of neural network modcl is similar to the way
humans or animals are trained by reinforcement tech-
nique, where certain synapses that connect the neurons
selectively get strengthened leading to increase in the
gain,

We attempt hcre to simulate the different types of
EEG patterns emanating from human brain during activ-
ity (eyes closed and open, epileptic seizure stages) and
inactivity (sleep stages 2, 4 and REM stages) using a
general regression neural network model.

Back propagation partially recurrent and cascade cor-
rclation neural network models have been used to simu-
late non-average single trial multi-channel EEG data
produced during the side finger movement’. The cascade
correlation neural nctwork model was found to predict
the obs signals well.

Neural network models have been used to train on
ECG signals of patients with anterior und myocardial
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infarction and the network was later used for prediction
of abnormalities'®. Back propagation model has also
heen used for detecting spikes and seizures during epi-
leptic fits''. for simulating the oscillatory activity ob-
served in the visual cortex”‘, and olfactory system”’.
Very little work is reported on simulating the EEG brain
signals during various sleep stages, eyes open and
closed stages. A trained neural network model can help
in identifying sleep disorders, changes in sleep pattern
and variation in sleep patterns between individuals.

Two networks that are well suited for modelling, pre-
diction and classification are back-propagation (BP) and
general regression neural network (GRNN)"™. BP net-
work is a general purpose nonlinear regression tech-
nique which attempts to minimize global error. The
'main advantages of the GRNN over the BP network are
(i) it can handle non-stationary or noisy data; (ii) it can
be effectively used with sparse data. This network was
proposed by Donald Specht of the Lockheed Palo Alto
Research Laboratory.

Each PE in the network has several inputs and out-
puts. The output path of a PE is connected to the input
path of another PE through connection weight. The in-
put signal is multiplied by the weight before it is sent to
the PE. All the weighted signals are summed up and fed
as the input to the PE. This signal is transformed and
sent to the output path of the PE. A neural network nor-
mally has one input, one output and at least one hidden
layer and, there may be several PEs in each layer. Dur-
ing learning stage the weights are manipulated so that
for a given set of input signals, the outputs estimated by
the network match the actual values.

GRNN uses a statistical equation for calculating the
conditional mean Y of a scalar random variable y given a
measurement X of a vector random variable x. The
conditional mean is statistically the most probable value
for the random variable Y for given X. The vector ran-
dom variables x and y correspond to the ensemble of
inputs and outputs of the network. The equation for
conditional mean requires knowledge of the joint prob-
ability density function (PDF) of the random variable x
and y. |

In GRNN, the PDFs are obtained from the trainin
vectors using Parzen estimation. Parzen estimation 1s a
non-parametric estimation procedure which approxi-
mates a density function by constructing it out from
many PDFs and, it takes the form of a Gaussian distri-
bution (bell-shaped curve). The parameter used in the
exponential term of the Gaussian equation is estimated
from the input vectors and their centre and, is given by
the square root of the sum of square of the difference
between the input vectors and the centre. It is also
known as the Euclidean distance (D,). This type of
summation is called Euclidean summation and is suit-
able for most of the problems. The estimate for the
conditional mean for the output vector is given by
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0, the width parameter = SITE™ 0<E< 1.

At the start of the learning cycle, the number of pat-
tern (or hidden) PE can be set to the number of data
vectors in the training file and later changed depending
upon the network performance. Three parameters which
control the learning process are the radius of influence,
reset factor and time constant.

If the input vectors or training samples are large, the
estimate for conditional mean becomes both time and
memory-intensive. So the input vectors are grouped to-
gether (or clustered) and the average value of the groups
are used in the calculations in order to decrease the
simulation time. Any input vector is assigned to a near-
est group if its distance to the centre of a previously
established kernel is less than the radius of influence,
otherwise a new kernel is established. A very small
value for radius of influence will lead to a large number
of clusters and hence increased computational time.
Whereas, a large value will give fewer clusters and
hence loss of sensitivity and possibly poor data fit.

PEs whose contributions in the summation are very
small are termed as non-winning PEs. All the output
weights from each of these non-winning PEs are multiplied

1 volts

Output Layer
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from all PEs

 Pattern PES
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Figure 1. A general regression neural network for the EEG problem
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Figure 2. Compari~on of human EEG data (points) and GRNN
model simulation (continuous lines) during the stages of eyes open
(9950 PEs) and eyes closed (1500 PEs). (Number of PEs required for
simulation are given in brackets. ¥ axis 1s not to scale but presented
arbitrarily to show the fit between the model and the simulation,
Y axis ranges for eyes open and closed are 10 and 60 pV respec-
tively.)

by a numeric term (called forgetting function), whose
value decreases in an exponential fashion. The value of
the time constant in the exponential term decides how
fast the weights decay. When the weights become
smaller than the ratio, reset factor/number of PEs, then
the particular weight is set to zero. A large time constant
could lead to slow decay of the weight from non-
winning PE. The suggested value for radius of influence,
reset factor and time constant are 0.05, 0.01 and 1000
respectively. In all the simulations about 10000 learning
cycles were employed. Figure 1 shows a typical GRNN
with a single input and single output, in this case time
and UV respectively, and several pattern PEs in the hid-
den layer.

The EEG patterns were simulated by GRNN network.
NeuralWorks Explorer (NeuralWare Inc., Pittsburgh,
USA), a software running on a PC 386 equipped with a
math coprocessor, was used for these studies". The hu-
man EEG brainwave data were read from the figures
given in references 3 and 4. The blown-up figures were
scanned using a flat bed optical scanner, digitized and
the data points were read into a computer program using
a mousc and a cursor. The data points were uniformly
spaced out in time. Time versus BV were read out from
the digitized data. About 5000 data points were col-
lected from each pattern signal, 80% of the data was
used by the neural network model for fitting and the
remaining 20% of the data was uscd for comparing
modecl predictions with actual values.
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The goodness-of-fit (root mean square error = RMSE)
Is obtained by calculating the square root of the mean of
the sum-of-squares of the difference between model
predictions and the actual data. Generally RMSE de-
creases as the PEs are increased. The simulations were
performed by systematically increasing the number of
PEs until the corresponding RMSE reaches a minimum
value or remains unchanged. The PEs reported in the
paper correspond to the lowest RMSE. In all the figures,
points represent observed values and continuous lines
are the neural network model predictions. In the figures
only a few data points are shown for the sake of clarity.
Also, data points near peaks and valleys are shown be-
cause maximum differences are generally expected be-
tween model predictions and data at these points.

An alert and active brain produces beta waves, which
are high frequency low amplitude events (~ 10 uV) (ref.
4). As the eyes are closed, the relaxing individual pro-
duces alpha waves, with an average frequency of 10 cy-
cles/s and amplitudes of the order of 60 uV. Alpha
waves are well ordered and much more coherent than
beta waves. Figure 2 shows the comparison of EEG data
with simulation of both these waves with a GRNN net-
work model. The alpha waves were simulated with 1500
PEs, whereas the beta waves were simulated with 9900
PEs. Both the simulations were carried out with 10,000
learning cycles and, radius of influence of 0.0001. A
very low radius of influence indicates that no clustering
of PEs was done. From the figure it could be noticed
that the model is able to predict the observed behaviour
reasonably well. Beta waves have fine structure, hence
require more PEs (by an order of 6.5) to simulate than
the well-ordered alpha waves. As the brain reaches a
relaxed stage (alpha) {from an alert one (beta), the num-
ber of neurons in an active state in the brain possibly
decreases, which is very clearly seen from the number of
PEs required for simulation.

In sleep the individual drifts in and out of four stages
of sleep. Sleep stage 2 1s a light stage, with shightly co-
herent waves of amplitude of 70 pV. Sleep stage 4, 1s a
deep sleep stage, with amplitude of 120 uV and about
3-5 cycle/s. The four stages of sleep are followed by the
rapid eyc movement sleep (REM) in which he dreams.
In the REM stage the cerebral activity reverts to a non-
coherent state, with an amplitude of about 30 pV. All
these three sleep stages are simulated with a GRNN
network having 4000, 2000 and 2500 PEs respectively.
Figure 3 compares the data with the simulation. As the
sleep enters the deep stage 4 from stage 2, the number of
PEs decrcases by half, indicating that the number of
neurons active in the brain also decreases, possibly by
half. The number of PEs required to simulate REM sleep
is morc than that required to simulate sleep stage 4, but
less than that required to simulate stage 2. The EEG
brain wave data shown in Figures 2 and 3 were taken
from reference 4,
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Figure 3, Comparison of human EEG data (points) and GRNN
model simulation (continuous lines) during sleep stage 2 (4000 PEs),
sleep stage 4 (2000 PEs) and REM sleep (2500 PEs). (Number of
PEs required for simulation are given in brackets. ¥ axis 1s not to
scale but presented arbitrarily to show the fit between the model and
the simulation. Y axis ranges for sleep stages 2, 4 and REM are
70,120 and 30 pV respectively.)
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Figure 4. Comparison of human EEG data (points) and GRNN
model simulation {continuous line) during petit mal seizure (5000
PEs). (Number of PEs required for simulation are given in brackets.
Y axis range for petit mal seizure is 120 pV.)

There are several forms of epilepsy and, seizure of
short duration (~5 s) is known as ‘petit mal’>, This type
generally invades the entire cerebral cortex and shows a
bilateral symmetry between the two hemispheres. During
the seizure the EEG activity switches to an apparent
oscillating modec. Figure 4 compares the data and the
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Table 1. Cﬂmparilsnn of human cerebral activity, number of PEs
required in the GRNN neural network model for simulation and the
fractal dimension of the EEG signals

Number of PEs required Fractal dimension

Activity for simulation (from refs 2-4)
Eyes open 9950 9.7
Eyes closed 1500 6.6
Slecp stage 2 4000 5.0
Sleep stage 4 2000 4.05
REM 2500 8.2
Petit mal

5000 2.05

simulation carried out with a GRNN network, of
the EEG pattern of the epileptic stage with 5000
PEs. The model appears to simulate the epleptic
waves fairly well. It appears that the number of neurons
taking part during the seizure is more than the
normal REM stage but less than the eyes open active
stage. The EEG data of ‘petit mal’ was taken from refer-
ence 3.

Table 1 lists the number of PEs required for simulat-
ing the EEG waves at various stages of brain activity. [t
also gives the fractal dimension, which is a measure of
the minimum number of variables required to describe
the signal®*. Fractal dimension also measures the tem-
poral coherence of the phenomena and follows qualita-
tively the degree of arousal. The fractal dimension
decreases from the eyes open to the eyes closed stages,
and so does the number of PEs required for simulating
these two states. A similar trend in fractal dimension
and number of PEs is observed in the case of sleep
stages 2 and 4. Although the fractal dimension in the
case of REM sleep is high, the number of PEs required
for simulation is low, The fractal dimension of the EEG
signals during the REM stage and epileptic seizure are
8.2 and 2.05 respectively, indicating a large reduction in
the complexity of the signals. The neural network model
studies indicate that the number of PEs required for both
these stages are 2500 and 5000 respectively. The PEs
required for simulating ‘petit mal’ seizure should have
been much lower than this value. The RMSE in all cases
is of the order of 0.05 to 0.07 (error margin of about 5
to 7%), indicating a good data fit.

This paper describes the modelling and simulation of
the EEG patterns observed during the various stages of
human activities. The simulations were carried out with
general regression neural network model. The number of
neurons required to simulate the EEG patterns and
rhythms could be reasonably explained based on the
brain activity. Most number of PEs are required to
simulate beta waves observed during an active brain
with eyes open. This is followed by ‘petit mal’ seizure.
A correlation exists between number of PEs and fractal
dimension in some cases. It should be borne 1n mind that
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the number of PEs required for simulating a particular
activity estimated from modelling, cannot be equal to
the number of neurons in the brain taking part in the
activity. But, the ratio of PEs estimated by modelling for
two activities may be an indication of the ratio of active
neurons in the brain during two activities. Although an-
other neural network model, namely back. propagation
model, was not able to fit these EEG patterns, other neu-
ral network models could also be attempted.
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The response of IgG subclasses to diethylcarbamaz-
ine (DEC) treatment was studied in bancroftian fi-
lariasis patients. On the basis of clinical signs and
parasitological examination, a total of 22 patients
were categorized into asymptomatic microfilaraemics
(AS-Mfmic; r=12) and symptomatic amicrofila-
raemics (S-AMfmic; n =10). The subjects were
treated with DEC (300 mg/day) for 21 days. Before
treatment, AS-Mfmic cases showed higher levels of
IgG, and IgG,4 than the S-AMfmics whereas IgG; was
higher in S-AMfmics than in AS-Mfmics. DEC
caused more than 90% reduction in microfilaraemia
by day 30 since the start of treatment in AS-Mfmics,
while S-AMfmics remained amicrofilaraemic
throughout the study period. In AS-Mfmics, DEC
treatment enhanced IgG, and decreased IgG, levels
while IgG, and IgG; remained unaffected. In S-
'AMfmics, DEC treatment caused decrease in IgG,,
IeG, and IgG,, while IgG; level remained unchanged.
We report that DEC therapy brings about changes in
specific IgG, and IgG4 in AS-Mfmics and IgG,, IgG;
and IgG; in S-AMfmics.
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FILARIAL parasite initiates immune response in its host
at both cellular and humoral levels. Clinical expression
of filariasis, therefore, reflects not only the duration and
intensity of infection but also the degree and character
of different types of immunologic responses. Asympto-
matic microfilaria (mf) carriers have depressed anti-
body- and cell-mediated 1mmune responses while acute
manifestations and chronicity are associated respectively
with an intermediate and hyper-immune response'™.

The major immunoglobulins involved in the antifilar-
1al antibody responses in human host are IgG, IgM, and
IgE*>°. IgG is the major immunoglobulin detectable in
all categories of filarial subjects and the clinical severlty
of the infection is directly related to this isotype’. Re-
cent studies have also shown that different categories of
filarial subjects have different IgG subclass profiles.
Specific IgG,; and IgG; are predominant in chronic lym-
phatic filariasis whereas 1gGy is elevated m rnf carriers
and tropical pulmonary eosinophilia cases . As IgG;
was suggested to indicate the presence of parasltes‘,8 10
Wamae ef al.'! used it as an indicator of adulticidal efﬁ-
cacy of diethylcarbamazine (DEC) or ivermectin tn mi-
crofilaraemic (bancroftian) human subjects. However,
whether DEC can also bring about alteration in other
subclass responses in bancroftian filarial patients 1s not
known. We report here the response of IgG subclasses
to DEC treatment (shortly after cessation of the treat-
ment) in symptomatic amicrofilaraemic and asympto-
matic microfilaraemic bancroftian patients.

Paticnts reporting to the outdoor clinic of King
George’s Medical College, Lucknow for treatment of
various ailments, were examined for filariasis. The pa-
tients were from Lucknow and its adjoiniog arcas which
are known to be endemic to bancroftian filartasis. A
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