HISTORICAL NOTES

The cakravala method

S. Raghavan

The object of this article spurred by a
book review in Current Science (1996,
70, 753-754) is to try to place in proper
perspective the well-known work of
Indian mathematicians especially their
kuttaka, bhavana and cakravdla meth-
ods evolved in connection with the
solution in integers of certain indeter-
minate equations of degree one or two.
In this effort, we base ourselves com-
pletely on André Weil’s masterly, unbi-
ased and incisive analysis of this topic
in his beautiful book Number Theory —
An Approach Through History — From
Hammurapi to Legendre'. Any help
needed to understand related results
concerning continued fractions can be
readily secured from the book An Intro-
duction to the Theory of Numbers®
(especially chapter 7), although we en-
deavour to skirt a reference thereto by
the reader by providing as self-
contained an account as possible of
facts related to stmple continued frac-

tions (in the sequel).

Solving indeterminate equations of

the first degree, say ax+ by +cz+ -
= m in the variables x, y, z, ... with inte-
gral coefficients a, b, ¢, ... for integer
values of the variables has been the key
to cracking puzzles or finding integral
solutions of simultaneous simple
linear congruences, e.g. x = k(mod r),
y = [(mod s5) requiring x - k, y~1[ to be
divisible by integers r, s respectively for
given integers k, I. A single linear con-
gruence px = m(mod gq) in the variable x
for the modulus g is equivalent to a
linear equation px - gy =m in two vari-
ables x, y. Euclid’s algorithm for finding
the greatest common divisor of the inte-

gers p and g provides a method of

solving the last-mentioned equation;
expanding the rational number p/g (for
q # 0) as a simple continued fraction
gives an alternative (but equivalent)
approach to the same problem. A clear

description of the general solution of

this linear equation in x, y can be found
in the Sanskrit text Aryabhatiya of the
Sth or 6th century A.D. In subsequent
Sanskrit treatises, this method came to
be known as the ‘kuttaka’ (=*pulveriser’)

and is indeed a kind of forerunner of

490

Fermat’s powerful principle of ‘infinite
descent’. It is also the ‘“first ever explicit
description’ of the general solution from
anywhere, not taking into account
China. Indian astronomy at that time
was under the influence of Greek

sources and yet perhaps one cannot with
certainty attribute ‘kuttaka’ to Greek
mathematics. In utter disregard or
(possible) ignorance of this Indian di-
mension to the ‘kuttaka’ and of the con-
nection with the seventh book of
Euclid’s Elementa, Bachet inserted a
strong claim to the method as his own,
in the second edition of his book on
Problémes plaisants et délectables.

Let N be a natural number which is
not the square of an integer; the sim-
plest example is N=2. In view of the
connection with finding close approxi-
mations to the irrational number YN by
rational numbers, indeterminate equa-
tions of degree 2 like x* = Ny’ = + m for
given integers m must have been indeed
investigated by the Greek mathemati-
cians. Spectal cases of the ‘composition
formulae’

(x* - Ny*)(&* ~ Nr)
=(xz = Nyt)* = N(xt = y2)2, (1)

e.g. for N=3, z=35, t=3 may have
been applied by Archimedes for finding
rational approximations to 3. How-
ever, the composition formula (1) oc-
curs explicitly in the work of
Brahmagupta (in the 7th century) while
seeking the solution in integers x, y of
equations of the form x* - Ny’=*m
for any fixed natural number m. For
m=1, the name Pell’s equation has
come to stay for the diophantine equa-
tion

¥ -Ny' =1. (2)

Such equations ‘do occur in Diophan-
tus..., but 1t is a rational solution that 1s
asked for, even when accidentally a
solution in integers is obtained...”. It
may be reasonable to suppose that Ar-

chimedes was interested in equations of

this (ype or, to be very optimistic, that

he had even found a general method of

solving equations like (2).

In the book entitled Algebra with
Arithmetic and Mensuration, from the
Sanscrit of Brahmegupta and Bhdscara
by H. T. Colebrooke, one finds an entire
section dealing with Brahmagupta's
investigations (in the seventh century)
on Vargaprakrti — the solution of equa-
tions Ny* + m = x* in integers x, y with
N as above and m, a non-zero integer; N
is called ‘gunaka’ (or ‘prakrti’) and m
the ksepa (=additive). If the triple
(x, y; m) stands for a solution in integers
x, y of the equation X - Ny2 = m, keep-

ing N fixed all the while, the composi-
tion formula (1) is given Dby
Brahmagupta in the form

(x,y; m) - (z, t; n) = (xz = Nyt, xt

+ yz; mn).

These laws acquired, in the post-
Brahmagupta manuscripts in India, the
name bhavana (‘production’) rules; 1in
modern parlance, this 1s just the
‘multiplicativity of the norm’. Brahma-
gupta shows, how composition of
(x, y; m) with a triple (p, q; 1) gives a
triple (x’, y’; m) for the same additive m.
Under composition with itself, any tri-
ple (x,y;m) yields a solution in rational
numbers x'/m, y'/m of the equation
(x’Im)* = N(y’/m)* =1 and indeed a tri-
ple (x’/m, y'/m; 1) if x'/m and y'/m are
actually integers. Applying then his
bhavana, Brahmagupta solves equation
(2) for several cases of NV including ones
like N=92 or N=83. For m=-1 or
+2, composition of a triple (p, q; m)
with itself leads to (p? + Ng*, 2pg; 1) or
(p* + Ng*)/2, pq; 1) respectively.
Despite the remarkable results of
Brahmagupta, the general solution of
(2) is still not at hand., Actually, the
cakravala (‘cyclic’ method) for getting
the general solution of equation (2) is to
be found much later, around the twelfth
century, in the work of Bhaskara; nearly
the same description of the cakravala is
provided in a commentary of the elev-
enth century by ‘an otherwise unknown
author’ Jayadeva, leaving one to guess
who was the true inventor of the
cakravila. Following Weil, we can see
how the brilliant cakravala arises In a
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natural manner from the work of earlier
Indian mathematicians.

Starting from a triple.(pg, gp, M) With
‘small” my, the idea is to use the
bhavana to get a triple (p,, g; m;) with
m, also ‘small’ and eventually hope to
hit upon a triple (i, v; 1) giving a non-
trivial solution of equation (2), of
course. First we can assume, without
loss of generality that the greatest com-
mon divisor d of p; and gy in the 1nitial
triple is already equal to 1, since if
d > 1, we could start instead from (py/d,
go/d; mg/d”). Since py and g, have great-
est common divisor 1, so have gy and m
clearly. Then the kuttaka readily enables
us to find an integer x; such that my
divides po+goxp (i.e. solve  the
arithmetical congruence gpXy =
-po (mod my)). If, in addition, the cho-
sen xp ts fixed in its residue class
modulo », s0 as to satisfy the inequali-
ties xg <~ N <xg+Imyl, then we see

that ~N +x, cannot be negative
nrovided that Imgl<?2N  (since
‘/N +x5< 0 would imply that

Z‘JTJ. < m + Xo + h’ﬂgi < lm{}‘) and con-
sequently for imy! < 2+/N

0<N-x3 =(N =x)(vN + xp)
<Im(WN +N)=2lmglNN. (3)

Composition  of  (pg, go; me)  with
(xo, 1; x2 — N) gives rise to the triple
(P1, q1; m;) where

p1 = (poxg + Ngo)/(my,

g1 := (po + qoxo)/my,
"y .= (I{% — M!’mn (4)

integers. {(In fact, by
composition, (mgpy)? = N(nogy)* =
my(x§ —N)=mim; and  g5(x§ — N)
= 9:211121 _Plzl + my = my((goXp — Po)  (GoXo
+ po)/my + 1) is divisible by my, 1.e.
x2 — N is divisible by my in view of the
greatest common divisor of my and g§
being 1 by our assumption above. Thus
m, is an integer while the congruence
condition on x, implies that g, 158 an
integer as well and so are pl=Ngl +m,
and p; too as a conscquence!) More-
over, mgmyl = N~ x2 < 2lingl' N, by (3)
and therefore we have

mi<2VN, (3)

are clearly

Starting with the triple (po gun; 1), the
passage to {pj, g;: mp) as above gives an
inductive construction of the triples
(pi, q,; m;) as follows.

It is convenient to take g, =1 and
Py :=[+N ], the largest integer not ex-
ceeding the (positive) square root [N ]
of N, so that 0 < /N —p,y < 1. The con-
gruence condition on x; now looks
simpler, viz. xp = - pg (mod my) with
ny = pd - N<Q, i.e. xg is any integer
such that xy + p, is divisible by m, (but
subject to the additional conditions
xy < NN < xy+ Imgl, of course!). Due to
the special choice of gy, the kuttaka
does not need to be invoked here (for
solving a congruence for xp) but also at
every subsequent step under the induc-
tion, as nicely emphasized by Weil. We
reproduce his comments in this regard
verbatim'. ‘Strangely enough, this does
not seem to have been noticed by any of
our Indian authors (nor even by their
later commentators, down to the six-
teenth century); they make no mention
of it, and invariably refer to the kuttaka
for the choice of x, even though their
abundant numerical evidence could
casily have convinced them that this
was unnecessary.’

l.et us assume the triples (p;, g;; m;),
x; for 0 <j<i constructed inductively
with lm < 2N, x;=-x;_, (mod m)) i.e.
x; + x;; divisible by m,, xj«:m < X
+ Imyl, m_y =1, X_| \=Po and
x4y~ N=mj_ym; for j20. Then com-
position of (p;, g;; m;) with the triple
(x;, 11 x? = N) leads to the definition of
Pists Gisls Mist,  VIZ.  pig = (pix; + Ng;)
Im,, @i = (gx;+p)lm; and my =
(x? — N)/m;. The congruence condition
on x; above coupled with the relation
~qiXi_y + pi = = Xioy (Gi1Xiy + pic))mi_y +
(Picixia + Ngi_)imisy=qisy (N = xi)
m;_y = —q;_ym; ensures that g;,; 1s an
integer. Since m;,; is an integer by the
same congruence condition on x;, p;,.q 1S
an integer too. The same kind of argu-
ment applied to derive the bound (3)
leads to bm; l<2~N and further en-
sures that (~1)'m,_,, vN tx; are all
positive (and so N-=x*>0 for all i).
We have thus, on hand, an infinite se-
quence of integers (the ‘additives’)
mg, m, My, ... bounded by 2+/N in ab-
solute value. Hence infinttely many
among them must coincide by
Dirichlet’s box principle. But, as we
will see presently, much more is true,
namely, (i) there exists an integer s such
that my,, = m; for j 2 1 and (i1) m; = 1 for
an integer j, leading to a solutton of
cquation {2),
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In other words, the m; repeat them-
selves in a periodical fashion (actually,
corresponding to the periodicity of the
infinite simple continued fraction
expansion for the quadratic irrationality
JN). |

Before moving on to indicate proofs
for assertions (i) and (ii) above, it will
be quite in order to quote some interest-
ing observations by Weil (see ref. 1 pp.
23, 24, 94-97, 230-232) on the con-
struction of (p;, q;; m;). ‘The Indian pre-
scription’ for the choice of x; within its
congruence class modulo m; is not quite
the one described above, since their rule
is ‘to make N — x? “small” (i.e. in actual
practice, as small as possible), but as the
context shows, in absolute value’ or in
other words, to replace x; by
y; = x; + Im;l if y* — N turns out to be
less than N~ x?. ‘It can be shown that
this has merely the effect of abbreviat-
Ing the procedure somewhat when that
is the case,” but though ‘numerically
useful’, can ‘make the theoretical dis-
cussion much more cumbersome.’
Moreover, the above rigorous treatment
for constructing (p;, g;, m;) ‘may have
been known to the Indians only experi-
mentally; there is nothing to indicate
whether they had proofs for them, or
even for part of them’. ‘In order to carry
out the cakravala’, a ‘starting point’
which ‘invariably they choose’ is the
triple (pg, 1; my) ‘for which p§ is the
closest square to N, above or below.’
Finally we are told to iterate the process
only till we find an “additive” m with
one of the values *1, +2, ¥4 and then to .
make use of the bhivand, i.e. Brahma-
gupta’s procedure for that case. Actually
this is no more than a shortcut, since it
can be shown that the cakravala applied
in a straightforward manner, would in-
evitably lead to a triple (p, g; 1) as de-
sired; while this shortcut 1s quite
effective from the point of view of the
numerical solution, 1t destroys the
‘cyclic’ character of the method, which
otherwise would appear from the fact
that the additives --» would repeat them-
selves periodically corresponding to the
periodicity of the continued fraction of
VN

‘For the Indians, of course, the effec-
tiveness of “cakravala® could be no
more than an experimental fact, based
on their treatment of a greal many spe-
cial cases, some of them of constderable
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complexity and involving (to thetr de-
licht, no doubt) quite large numbers.
Fermat was the first to perceive the need
for a general proof and Lagrange the
first to publish onc, Nevertheless, to
have developed the cakravdla and to
have applied it successfully to such
difficult cases as N=61 or N =67 had
been no mean achievement.’

We now go on to the promised proofs
for assertions (i) and (11) above. The
triples (p;, gqivm;) and x; for i 20Q as
consiructed above enable us to obtain an
infinite simple continued fraction for
JN. Let Ep = NI + Po, Qp .= 2Do,
a; = {~1)(x;_; + X;3)Y/m;y for i21 and
n, be defined by ¥N =x; +7; forj 2 0.
Then, in view of the relation
xiy=N=m_im; for j 2 0, we can de-
rive the following:

|
§ﬂ=ﬂﬂ + Wi[h
&

I m'{'pg
El-_JN_Pn_ —my

XotHot+Po Xo+X_i . Mo

—mg . -mg -y
] ] h Mo
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—mgmy m

1 m NN +x
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2“2 53! 3 ‘JN""II“ —m,

_Iz'*‘ﬂz"l"xi I|+xz+ s
- Ml - ~ 1y =M,
‘\JN“I"‘I;_Z 1
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(7)

Using terminology from the theory of
continued fractions?, we see that

Eo=~N + [N ] has the infinite con-
tinued fraction expansion

Eo = (ﬂu, ay,dz, *"" ).

with the natural numbers ay, a;, as,* -
occurring as partial quotients,

There exists, as we shall see now, a
minimal positive integer r such that
a;,, = a; for all i from a certain index |/,
say. Now & =(JN + x;)/(-1)Ym,_, as
derived inductively in (7) and coupled
with the bound inl < 2N foralli=0,

the relation x? = N + mm;,; leads to the
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bound x> < SN for all i = 0. The num-
ber of distinct pairs (xi_1,(~=1)Y"'m) of
integers for i =1,2,3,... subject to such
fixed bounds (depending only on the
given non-square natural number V) can
only be finite. Thus there exist indices {
and k > [ such that

(ys (D) = (o (=D 'my), e,
EI = (ﬂ;, iyl -ee

=& =(ax atse-)s (8)

and therefore

y A1, Ek)

Eﬂ = (ﬂ[], Alyeensli_1s Gy Qritsecarlpn), E.l)

- (ﬂ{], [/ S / ¥ B Ay Aretaeaslpo]y
af! ﬂf—l—i!l-rl'a‘:-_l-.-)

= (ﬂu, Apyeeaydp 1y Q) Qpay el )

is a periodic continued fraction with
period r:=k-1[, proving that g, =a;
for all i 2 {. Clearly r can be chosen to
be minimal.

In the case of Eg= VN + [N ], we

can even show that [ =0, i.e.

En =(a 71 589 yeee sl ) (9)

and so is ‘purely periodic’. For this
purpose, we note fhirst that while
Eo=po+ N >1, its  ‘conjugate’
£ '=po— VN satisfies the inequalities
~1<£,<0. Denoting for &=
(VN +x.)/(-1)m;_, its ‘conjugate’
(-vVN +x._)/(-1Ym;_; by &;, we have

Ei=a;+1/§;,, 5;=a;+1/§;+1- (10}

Now a;=1 for every i, (-1)m;,
JN - x;_; are all positive (by construc-
tion) and so, &; <0, leading to
1/, =& —a; <~1, i.e. -1 < &, <0 for
every i = —1. But then, using (10), we
have 0 < (-1/&;, ) —a; <1 so that a; is
just the largest integer [~1/£},,] not
exceeding the positive real number
~1/E,,. Since, for k> 1, £, =&, by (8),
the ‘conjugates’ &) ,&; coincide and so
di1 = Qy_|- Thus from Eg-_—E; we con-
clude that é',:_l =a;_ + 1/5; =
a1+ 1/E, =& [teration yields
£, = Eqy = Eo, proving (9).

Now for any j = 1, &; has the same
continued fraction expansion

(ag, a1, Gsees@,y, Goy Aty Q200G

— (Gu AL 32 yain sl gy )

as Eu. Hence

m+xj,_2

(_ ] ) I m,_|

_Sjr=§ﬂ=m+p{}r

VN (1= (=1Y"mjp ) = (1Y 'my,_ipo - x;,.2.
But if ¢+ dvN =0 for integers ¢, d,
then necessarily ¢ =d =0. Hence, in
particular,

(—l)jrmj,_l = 1.

Whenever jr is even (e.g. j =2 for odd r
and j =1 for even integers r), we have
m;.1 =1 and the triple (p;—1y Gjr-1; 1)
gives a solution of the diophantine
equation (2) proving assertion (i1). As-
sertion (i) also follows from above eas-
tly.

An example of how unsparing a criti-
cal analysis can tend to be (when in-
tended or called for) may be found In
Weil’s remarks on Euler’s contribution
to the topic of ‘Pell’s equation’ and the
related continued fraction algorithm, on
pages 232-233 (ref. 1): ‘while Euler
drew attention’ to the periodicity and
‘palindromic’ property of the partial
quotients ag; in the ‘continued fractions
for square roots ~/ N, as well as to their
use in solving Pell’s equation, there is
no sign that he (Euler) ever sought to
back up his findings by anything more
than experimental evidence. He (Euler)
did mention that the values obtained by
his process for the integers B;, A;, m; are
necessarily bounded...; from this he
(Euler) could at least have derived the
conclusion that the sequence (m;) 1S
periodic from a certain point onwards,
but he failed to mention this, or did not
bother to do so’. When in his later years
(after Lagrange gave a ‘definitive treat-
ment’ of the subject, based on the con-
tinued fraction algorithm...), ‘Euler
came back to the topic of Pell’s equa-
tion, he added nothing of substance to
what by that time was already public
knowledge on that subject’.

Fermat must have been in the dark
about the contribution of the Indian
mathematicians to the solution of (2)
and also possibly about Archimedes’
Problema bovinum. He offered (in
1657) the problem of solving equation
(2) (in integers, of course!) as a chal-
lenge to the English mathematicians and
all others. In a personal letter to Huy-
gens, a few months later, commenting
on the solution by Wallis and
Brouncker, he observed that ‘the Eng-
lish had failed to give a general proof’;
such a (‘general’) proof, according 1o
Fermat, could only be ‘obtained by de-
scent’. But perhaps ‘Fermat’s method of
solution (for (2)) did not greatly differ
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from the one he got from Wallis and
Brouncker’ and ‘he had been able to
extract from it a formal proof of the fact

tion’.
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ern treatments based on continued frac-

2. Niven, . and Zuckerman, H. S., An In-
troduction to the Theory of Numbers,

that it always leads to a sclution’, The
method “‘which Wallis credits to
Brouncker’ is ‘equivalent to the Indian

cakravala method as well as to the mod- 1983.

Addendum

Fifty years of the exact solution of
the two-dimensional Ising model by
Onsager

Somendra M. Bhattacharjee and
Avinash Khare

[Curr. Sci., 1995, 69, 816821}

We would like to make the following correc-
tions/additions which we learnt after the paper was
written.

W. Lenz was working in Rostock University (not
Rostalk as mentioned in the text).

1. Weil, André, Number Theory - An Ap-
proach Through History — From Hammu-
rapi to Legendre, Birkhduser, Boston,

Wiley Eastern, New Delhi, 1976.

S. Raghavan is with the SPIC Mathematical
Institute, East Couast Chambers, IV Floor,

92, G. N. Chetty Road, T. Nagar, Madras
600 017, India.

E. Ising was a teacher (and later became the headmas-
ter) of a Jewish school in Germany from 1934 to No-
vember 1938. When his school was damaged, he
managed to leave Germany. It was as late as 1949 that
he realized that his name had become famous.

It seems that Ising also agrees that the model should
be named the Lenz-Ising model. The name ‘Ising
model’ became popular following the title of Peierls’
paper'”.

It appears that Heisenberg in his 1923 paper® also
thought that at least eight nearest neighbours are needed
for a phase transition. We are not sure whether this
comment by Heisenberg refers to the Ising model or to
the new model he proposed in that paper.

We thank Prof. Sigismund Kobe of University of
Dresden for several clarification.
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