Thomas Kailath

1. Introduction

‘There is nothing better than concrete cases for the mo-
rale of a mathematician. Some of these cases are to be
found in mathematical physics and the closely related
mathematical engineering...’

So wrote Norbert Wiener in 1949, in an obituary of
G. H. Hardy, who reputedly would have shuddered at
the thought. [Ironically, Hardy’s own major field of
number theory has been of great importance for many
applications, for example in secure data communica-
tions.] This paper will attempt to describe how one par-
ticular concrete problem in Wiener’s own work —
solving the Wiener—-Hopf equations encountered in as-
trophysics — led him, and then a vast host of followers,
to chart out several new areas of investigation, and to
develop a very significant body of knowledge, which
can well go by the name Mathematical Engineering. In
the era of the PC, the Internet and the World Wide Web,
few of us can be unaware that mathematical engineering
has come to play a major role in the world around us.
And with this has come, as this paper will describe, an
increasing recognition of the seminal role of Norbert
Wiener’s ideas and influence in the development of this
field.

It must be said that the term ‘Mathematical Engineer-
ing’ does not enjoy the currency that the name
‘Mathematical Physics’ does. Being a younger field, its
proponents still focus on more specialized descriptions
such as Information Theory, Communications, Control,
Signal Processing, Computational Complexity, Image
Processing, etc. The names ‘System Theory’ or even
‘Mathematical System Theory’ have been advanced but
are not universally accepted. However this author be-
lieves that the increasing intecrmingling of the fields
mentioned above, with many tools and techniques being
successfully applied across them, as well as the tremen-
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dous opportunities ahead of them in the Information Era,
could well lead to the adoption of Wiener’s suggestion.
And be that as it may, Wiener’s early vision and pio-
neering contributions will, as mentioned earlier, loom

~even larger with time. Already in 1962, in a special is-

sue commemorating the 50th anniversary of the effective
existence of the IEEE (Institute of Electrical and Elec-
tronics Engineers), Lotfi Zadeh, winner of the 1995
IEEE Medal of Honour wrote ‘If one were asked to
name a single individual who above anyone else is re-
sponsible for the conception of system theory, the an-
swer would undoubtedly be ‘Norbert Wiener’, even
though Wiener has not concerned himself with system
theory as such, nor has he been using the term “system
theory” in the sense employed in this paper’.

There are many of Wiener’s results that have come to
be mmportant in mathematical engineering. Although
Wiener was apparently never quite secure about his
place in the pantheon of scientific innovators, he seemed
not to have such doubts about the significance of the

- particular concrete problem that we shall concentrate on

in this paper. This is the Wiener-Hopf equation, which
Wiener first encountered in 1931 in astrophysics and
then a decade later in the problem of anti-aircraft fire
control. I hope to indicate how Wiener’s work on this
equation has led to the development of a remarkably
broad, and deep, range of studies.

In the next section, we shall describe Wiener's beauti-
ful technique of spectral factorization for solving it. In
§ 3 and 4, we shall note that Wiener cncountered the
equation again in solving a problem in anti-aircraft fire
control and how his 1942 report on this project intro-
duced two fundamental 1deas that radically changed the
way cngincers approached important classes of prob-
lems. First 1s that the communication of information
must be formulated as a statistical problem; the second,
the introduction of opltimization criteria to obtain the
limits of performance and replace the earlier ‘trial and
crror’ approach to design, From these two tdeas has
grown the huge flood of activity noted earhice. However
to narrow the scope we shall return in the remainder of
the paper to a specific problem studied by Wiener -
filtering signals out of noisy observutions. After desernb-
ing his results, we shall turn to some of the mathematical
developments following from it. First we shall show n
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§ 6, how, while Wiener was not quite successful 1n ex-
tending his results to the case of multiple time series,
this can be done by the introduction of state-space and
Markov process descriptions. Somehow Wiener himself
never really focused on the Markov property. As we
shall see, the state-space description introduces the con-
cept of recursive solution algorithms and enables
straight-forward extension to nonstationary/time-variant
versions of the filtering problem. In § 7, we shall exam-
ine a widely used finite-time prediction problem, which
has been generalized by using the concept of displace-
ment structure. Finally in § 8, we shall introduce the
nonlinear filtering problem, which is still open, but for
which a key tool is martingale theory, the prototype for
which was the Wiener (Brownian motion) stochastic

process.

2. The Wiener-Hopf equation

Given ¢1(*) and ¢2(*) € £y (%, —®), ¢4,(*) even and
positive definite, find k() such that

¢12(f)=Jﬂm¢11(f—f)k(f)dfa t20 (1)

where k(1) = 0, t < 0. Equations of this type were appar-
ently first introduced by Hvol’son (1894, Leningrad)
while studying the scattering of light by milk glass, and
later (ca 1920), by E. A. Milne, K. Schwarzschild and
others in problems 1n astrophysics.

While such equations attracted considerable attention,
explicit analytical solution was long thought to be im-
possible, a point of view that, in the words of M. G.
Krein (1958) ‘was refuted in 1931 by the brilliant
achievement of E. Hopf and N. Wiener’. In fact, so
striking in its ingenuity and simplicity was their solution
that not only the technique, but the equation itself came
to be known by the name ‘Wiener-Hopf'. Moreover a
decade later, Wiener encountered the equation again,
with even more significant consequences!

The genesis of these events was apparently (Pincus
(1981)) a summer evening with E. Hopf at Wiener’s
country home in New Hampshire, where characteristi-
cally Wiener asked his visitor about challenging open
problems 1n his field. The next morning Wiener came
down for breakfast with a ‘solution’. It in fact needed
some reworking, which was done and the result was
published in 1931, with the unusual (for mathemati-
cians) nonalphabetical ordering of names. We shall
briefly outline the Wiener—Hopf idea (ignoring various
technical assumptions, for which see, e.g., Krein
(1958)).

The tools used in the solution had in fact largely been
developed by Wiener himself in collaboration with R. E.
A. C. Paley. First were the properties in the complex
plane of Fourier transforms of one-sided (or ‘causal’)
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functions. One motivation for Wiener’s interest in such
topics may have been his study of electrical networks
and his 1931 patent (with Y. W, Lee, Sc. D., Elec.
Engg.) on a new cascade realization (based on Laguerre
functions), of network impedance functions, known to
mathematicians as Caratheodory (or positive-real) func-
tions. In any case, for us the key property is that (again
under certain conditions) a function k(-) such that
k(t) =0, t <0, has a Fourier transform £(w) whose ex-
tension to the complex plane, £(s), s = 0 + iw, is analytic
in the RHP, o > 0.

The second tool was the closely related fact that such
extensions of nonnegative even functions

0 < Ow) = P(-v) _o <@ <

have unique canonical factorizations
D(s) = V(s)¥*(=s%),

where W(s) is analytic and bounded 1n the RHP, ¢ > 0,
while W7'(s) is analytic in the RHP, o> 0. It may be
noted that Wiener had recognized such functions, ®(-),
as Fourier transforms of autocorrelation (real, even and
positive definite) functions and described their signifi-
cance as power spectral density functions. An equivalent
result was discovered by Khinchin in 1934, leading to
the so-called famous Wiener—Khinchin theorem. [It
turns out that they had been anticipated by no less than

§S=0 + lw (2)

“Albert Einstein, in a two-page 1914 sketch answering a

question raised by a friend on measuring the ‘power’ of
meteorological time-series!] Now for the Wiener-Hopf

technique.
We first extend the equation (1) to the whole line by
introducing the function

8(1‘)=¢12(I)‘j:k(7)¢11 (t—7)dr —0<<t<>,

By the fact that (1) only holds for t = 0, we know that
g(+) is one-sided, but ‘anticausal’,

g(t) - 0 [ = 0
unlike the unknown ‘causal’ function k(-),
k(t) =0 t < 0.

Of course now we have two unknown functions, g(+)
and k(*), but give us a moment. Take Fourier transforms
in the complex plane to get

G(s) = Dyy(s) ~ £(5)D 1 (5).
Now use the canonical factorization (2) to write

G(s) _ Dp(s)
Y*(—s*) W*(-s5%)

£ ()Y (s)

But by construction G(s) and 1/\V*(—s*) are analytic In
the LHP, ¢ < 0, while £(s) and W(s) are analytic 1n the
RHP, o > 0. Equivalently the time function obtained by
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inverse Fourier transformation (IFT) of G{(s)/\F*(~s*)
will be zero for t = 0 (anticausal), while the time func-
tion corresponding to A(s)W(s) will be zero for t <0
(causal). This means that the latter time function must
be equal to the + = 0 portion of the IFT of ©,(s)/¥*
(—s¥*), leading to the famous formula for the solution of
the Wiener-Hopf equation (1)

Gio(p)  , dp
\P*(_P*)ep 2Tl (3)

1 oo
£(s)= lP(S*)*IO dte™*

We shall return to this equation in § 5, after an apparent
digression.

3. The problem of anti-aircraft fire control

Seeking eagerly to contribute to the War effort, Wiener
submitted a proposal to the National Defense Research
Council (NDRC) for a novel parallel computing machine
for solving partial differential equations, as arising for
example in aerofoil design problems. However, the pro-
posal was deemed unlikely to be completed in a reason-
able time frame. Wiener cast about for a more relevant
problem and hit upon the problem of anti-aircraft fire
control. In Dec. 1940, he sought and won a ($2350!)
project on ‘design of a lead or prediction apparatus in
which, when one member follows the track of an air-
plane, another anticipates where the airplane is to be
after a fixed lapse of time’. Under certain assumptions,
the problem can be reduced to one of finding an effec-
tive method of approximating an exponential function
by a rational function of suitable order, which Wiener
proposed to do by using ideas from his earlier (ca 1930)
work with Y. W. Lee on network synthesis. However
working with the engineer hired for the project, Julian
Bigelow, Wiener came to see in a few months, that be-
cause of noise and of model uncertainties, a satisfactory
engineering solution demanded explicit consideration of
the statistical nature of the problem, and also the use of
an optimization criterion. Effectively assuming that the
atrplane trajectories were sample functions of a station-
ary and ergodic random process, and imposing the
requirements of a linear apparatus and of the mean-
square-error criterion led him again to the
Wiener-Hopf integral equation. So the solution was at
hand! But unlike the apocryphal mathematician, who
promptly drops a problem when he reduces 1t to one that
has already been solved, Wiener realized that much
more was nceded for a real engincering solution.

In fact, Wiener’s project reports make a beautiful (and
perhaps the first) case study in how to use the theory of
optimal solutions in the real world. First, he confined
himself to the practically most significant case: rational
powcr spectral densitics, necessary for “the actual reali-
zation in the field by a finite electrical or mechanical
structure’. Here are a few other quotations; ‘the detuiled
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design of a filter involves ... choices ... which must be
justified economically’. ‘Let us see ... the stages that are
needed. The first stage determines the irreducible error,
Le., the error which cannot be reduced by any delay
whatever. ... Next, ... , we can determine a reasonable
delay, such that the delay error is not large in compari-
son with the irreducible error, the sense of ‘large’ de-
pending on the problem.” Writing about the assumption
of stationarity, he reassures the user that while the avail-
able ‘statistical information will in fact never be com-
plete, as our information does not run indefinitely for
back into the past, it is a legitimate simplification of the
facts to assume that the available information runs back
much farther into the past than we are called upon to
predict the future’. And so on. Few mathematicians be-

fore Wiener had such an interest in the many issues

arising in actual implementation.

Despite all this, however, the results actually obtained
in field trials were not satisfactory, and the project was
terminated. But Wiener wrote up the theoretical results
obtained in the course of the work, along with some
mathematical preliminaries and his philosophical views
on the nature of his new approach to the field of com-
munication engineering, in a remarkable 1942 mono-
graph ‘Extrapolation, Interpolation and Smoothing of
Stationary Time Series’. It was later declassified and
published in 1949 by J. Wiley and the MIT Press. The
classified report was widely circulated, while the engi-
neers of the day were hard pressed to follow its con-
tents, 1t was closely studied by mathematicians such as
N. Levinson and R. Philips at MIT, and H. W. Bode,
C. E. Shannon, R. Blackman and others at Bell Labora-
tories. They all wrote up expositions and variations of
Wiener’s results, some of which we shall mention later.

While preparing his report, Wiener was made aware
(by W. Feller) that some-what earlier, and apparently as
a purely mathematical investigation, the famous Soviet
mathematician A. N. Kolmaogorov had studied the pre-
diction problem for general discrete-time stationary
processcs. The approaches were quite different: Wie-
ner’'s concrete and focused on applications, Kol-
mogorov’'s more abstract and more general. Though
later both the methodologies — concrete and abstract —
became useful in applications, it was Wiener’s work that
had a greater tmpact on clectrical engineering, far be-
yond the original problem and solution.

4. Two new paradigms

In fact, Wicener was quite aware (and perhaps too much
s0) of the revolutionary stgnilicance of his work and
tdeas, and he stated his views quite emphatically in his
1942 monograph and in various other talhs and papers:
several passages from these works are quoted here, to
show the clarity and prescience of Wiener’s thinking.
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We begin with his clear and forceful statement of the
statistical nature of the communication problem.
Thus on p. 2 of his monograph:

‘Communication engineering concerns itself with the
transmission of messages. For the existence of a mes-
sage, 1t is indeed essential that variable information
be transmitted. The transmission of a single fixed item
of information is of no communicative value. We must
have a repertory of possible messages, and over this
repertory a measure determining the probability of
these messages.

‘A message need not be the result of a conscious
human effort for the transmission of ideas. For ex-
ample the records of current and voltage kept on the
instruments of an automatic substation are as truly
messages as a telephone conversation.’

And then on p. 4:

A staristical method, as for example a method of ex-
trapolating a time series into the future is judged by
the probability with which it will yield an answer cor-
rect within certain bounds, or by the mean (taken with
respect to probability) of some point, t.e., function or
norm of the error contatned in its answer.’

Yo apparatus for conveying information is useful
unless i1 is designed to operate, not on a particular
message, but on a set of messages, and its effective-
ness is to be judged on the way performs on the aver-
age on messages of this set. ... The appararus to be
used for a particilar purpose is that which gives the
best result ‘on the average’ in an appropriate sense of
the word ‘average’.’

To those now familiar with Information Theory, pre-
sented by Shannon in 1948, and Signal Detection The-
ory as presented by P. M. Woodward and others in the
carly 1950s, it 1s worth emphasizing that the above pas-
sages were written in 1942. As one major iliustration of
their influence, we may note Shannon’s gracious ac-
knowledgement at the end of his magnificent 1948 paper
founding Information Theory:

"‘Credit must also be given to Professor Norbert Wie-
ner, whose elegant solution of the problems of pre-
diction and filtering has considerably influenced the
writer's thinking in this field.’

But there i1s more. Going beyond the statistical prob-
tems he had studied, Wiener stressed the possibility of
formulating a variety of engineering problems as optimi-
zation problems, so that performance limits may bhe cal-
culated and reasonable solutions sought; this stands in
sharp contrast to many earlier trial and error methods:

‘These specifications give us an optimum filter to fit
the situation exactly, whereas the earlier methods de-
signed filters to certain specifications concerning
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passbands, sharpness of cut-off, etc., which stood in
no obvious relation to the actual demands of a prob-
lem and had to be adjusted to these by the process of
trial and error [N. Y. Acad. Sci. lecture, Oct. 1946].’

and again from his 1942 monograph:

‘Prediction and filtering do not exhaust the capacity
of our methods. They may be applied whenever an
ideally desirable linear operation ... is in fact not
strictly realizable, although an approximation may be
realized.’

In particular, Wiener suggested that his 1deas could be
applied to the design of compensators for control sys-
tems. This suggestion was picked up in the Ph D re-
search of R. Newton at MIT, who, along with L. Gould
and J. Kaiser, wrote a book on the topic entitled Ana-
Iytical Design of Linear Feedback Controls, Wiley,
1957. From 1t, we may quote passages that clearly echo
Wiener’s early insights (in the fifties, authors were not
as gender conscious as they are now):

‘... The analytical design procedure has several ad-
vantages over the trial and error method, the most
important of which is the facility to detect immedi-
ately and surely an inconsistent set of specifications.
The designer obtains a ‘yes’ or ‘no’ answer to the
question of whether it is possible to fulfill any given
set of specifications; he is not left with the haunting
thought that if he had tried this or that form of com-
pensation he might have been able to meet the speci-
fications.’

‘... Even if the reader never employs the analytical
procedure directly, the insight that it gives him into
linear system design materially assists him in employ-
ing the trial and error design procedure.’

However more than 50 years later, Wiener's message
s apparently still worthy of repetition. Thus, let us
quote from a very recent text book by M. Green and

D. Limebeer, Linear Robust Control, Prentice-Hall,
1995:

‘One does not want to waste time trying to solve a
problem that has no solution, nor does one want to
accept specification compromises without knowing
that these are necessary. A further benefit of optimi-
zation is that it provides an absolute scale of merit
against which any design can be measured — if a de-
sign is already all but perfect, there is little point in
trying to improve it further.’

‘The aim of this book is to develop a theoretical
framework within which one may address complex
design problems with demanding specifications in a
systematic way.’

We continue with some further remarks from this

book on the Wiener ideas, though the authors here cite
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also the work of R. E. Kalman, which we shall discuss in Jor the physicist averages over small ranges of t
a later section. From p. 2, we quote (note the ‘free ride’ rather values of a precise point of t.” [He goes on to
that Hopf gets; he perhaps was completely unaware of very simply show that] ‘all local averages of the for-
these applications): mal [Fourier] series [of f(t)] converge to the local

average of f(t). As we have pointed out, this is all that
we need to make a practical emplovinent of the
‘The first successes with control system optimization Fourier series for f(t).’

came in the 1950s with the introduction of the
Wiener-Hopf—Kalman (WHK) theory of optimal con-
trol. At roughly the same time the United States and
the Soviet Union were funding a massive research
program into the guidance and maneuvering of space
vehicles. As it turned out, the then new optimal con-
trol theory was well suited to many of the control
problems that arose from the space program.’

‘... [A] revolutionary feature of the WHK theory is
that it offers a true synthesis procedure. Once the de-
signer has settled on a quadratic performance index
to be minimized, the WHK procedure supplies the
(unique) optimal controller without any further inter-
vention from the designer.’

Wiener-Hopf-Kalman optimal control

This 1s the approach that later in 1948 L. Schwartz
elaborated in his theory of distributions which, among
many other things, made rigorous the widespread use of
impulsive functions by engineers. I cannot resist remark-
ing that Wiener also uses the ‘Sampling Theorem for
Bandlimited Functions’, first derived by J. M. Whittaker
in 1915, but to this day widely cited as Shannon’s
Sampling Theorem. There are several other little gems
in Wiener’s report, now fortunately also available in an
MIT Press paperback entitled ‘Time Series’. But let us
now return to some more explicit mathematical prob-
lems.

S. The Wiener filter

However, the major motivation for Green and Lime-
beer’s 1995 book was the fact that they were introducing

a new (so-called H) formulation: The appearance in 1949 of Wiener’s monograph, and of

Shannon’s work on Information Theory, generated a

‘In contrast to experience with aerospace applica-
tions, it soon became apparent that there was a seri-
ous mismatch between the underlying assumptions of
the WHK theory and industrial control problems. Ac-
curate models are not routinely available and most
industrial plant engineers have no idea as to the sta-
tistical nature of the external disturbances impinging
on their plant

Worst-case control: H_ optimization

‘H, optimal control is a frequency-domain optimiza-
tion and synthesis theory that was developed in re-
sponse to the need for a synthesis procedure that
explicitly addresses questions of modeling errors.’

Ironically, the new H, theory can be regarded as
Wiener-Kalman theory, but in Krein space rather than
in Hilbert space. More on this later.

Here, however, as a final quotation from Wiener's
own monograph, let us present one that tllustrates Wie-
ner’s keen insight into what mathematical refinements
are relevant to engineers. Engineering textbooks are
often still concerned about the level of rigor at which to
present Fourier Theory — should one worry about point-
wise convergence, L, convergence, etc? Wicner cuts
right to the heart of the matter:

‘Up to the present we have been treating the Fourier
series as a purely formal expression without any re-
gard to whether it converges or not. ... Now it is obvi-
ous that no physical quantity can be observed for a
single precise value of t. ... Thus all functions of t are
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huge wave of activity 1n, to use Wiener's phrase,
‘mathematical engineering’. A striking range of mathe-
matics has and is being used in these studies, as can be
seen by glancing through, for example, the IEEE Trans-
actions on Information Theory, on Automatic Control.
on Signal Processing, on Circuits and Systems, on Image
Processing, etc. Many of the algorithms were too com-
plex for implementation till about five to ten years ago,
but the pace of technology insertion 1s accelerating.

In the rest of this paper, we shall discuss one of the di-
rections most closely relatcd to Wiener’'s own work,
focusing on some problems left open by him: spectral
factorization of matrix-valued rational spectral densities;
finite-time problems/nonstationary proccesses; nonlinear
estimation/random signal detection. The 1dea 1s to give a
ghimpse of part of the wide range of conscquences aris-
ing from just one of Wiener's mathematical contribu-
Lions,

We begin with a review ot the so-called (causal and
noncausal) Wiener filters. A filter 1s a selective deviee,
c.g., onc that allows the transmission of certain tre-
guency regions (the passband) and rejects certain other
regions (the stop band). In filtering signals out of a
combination of the signals and additive noise, the con-
ventional solution was a device that rejects as much of
the noise as possible while passing the signal through
undistorted. I as s usually the case, the signal s band-
fimited (i.¢., occupies a limated frequency range) while
the notsc 1s wideband, the solutton is the so-called ldeal
Filter, with unit gain in the frequency regrons of the sig-
nal and zero gain clsewhere. Wicner pointed out that if
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the signal is a random process, one might better be more
concerned about regions where the power spectrum of
the signal is much larger than that of the noise, with
proper weighting to be assigned to different frequency

regions depending upon the choice of an optimization
criterion. The most fruitful has been Wicener’'s own
choice of a least-squares criterion.

To be specific, consider the problem of estimation the
value at a given time ¢ of a stochastic signal process s(-)

given the noisy observations
¥(r) = s(t) + v(7) —0 T < ® (4)

by using a linear time-invariant filter £(+) such that

§(t) =I_:h(t—r)y(r)dr

satisfies (£ denotes expectation)
Els(t) — §(£)I? = minimum.

Under the assumption that the processes {s(+), v(:)} are
zero mean and jointly stationary, it is not hard to check
that the optimum filter must satisfy the equation

| Py (1) =_[-wh(t-r)¢>),y (t)dt
where the ¢(-) are the autocorrelation functions

¢, (1) = Es(o + ny*(0), ¢,y(1) =Ey(o + 1)y*(0).

This equation is easily solved by Fourier transformation
to yield (using capitals for the transforms)

b,y ()
D, (0)°

H(w)=

When the signal and noise processes are uncorrelated
with each other, this reduces to

I3 _ ?s: (w) 5
©=8, @)+, () ®)

To reflect the fact that the noise has a much higher fre-
quency range than the signal, engineers often assume
that the noise is white,

O (w)y=R>0, -0 <w< >, . (6)

Such noise processes of course fall out of the scope of

the usual theory of stationary processes, since for one
thing, the IFT of @ (w) is a delta function, And, in fact,
since to have finite power all physical processes must
have spectra that decay to zero as @ — «, white noise is
nonphysical as well. Yet it is widely used, as a model,
for several important (mathematical and physical) rea-
sons that we do not have time to explain here. However,
it 1s interesting to see Wiener’s free use of the white
noise model, which is important for many reasons, both
theoretical and practical:

‘As for (the noise), we shall take a case which, al-
though not formally contained in the theory we have
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given, constitutes the limiting case of it, and one of
the greatest importance in practice. This is the case in
which the noise input is due to a shot effect and has
an equipartition of power in frequency. Theoretically,
of course, this is not strictly realizable, as it would
demand an infinite power; practically as in the case
of Plank's law in optics, it may hold within the limits
of observation up to frequencies of a magnitude so
great that they are no longer of interest for our par-
ticular problem.’

To return to our problem, with the white noise as-
sumption, we can see that

Dss(@) | Pss(0)
O (w)+ R R

H(w)= as R — oo,
On the other hand, as R — 0, H(w) tends to the ideal
filter (with unit gain 1n the passband of the signal), but
this is not the optimum filter when R # 0. As R — ¢,
we note that H(w) — O, (w)/R), so that the filter tends
to reinforce frequencies where @, (w)/R > 1, and to sup-
press the signal in regions where @, (w)/R < 1. This fits,
in hindsight, with our intuition, but the theory is neces-
sary to tell us what to do for arbitrary values of R, or for
nonwhite (often called coloured) noise.

The above solution, though given by Wiener, does not
use the Wiener—Hopf equation, because we are assuming

. that the process y(+) 1s observerd over all time instants,

past as well as future. When the observations of y(-) are
restricted to the past, we have to solve a Wiener—-Hopf
equation, which when (4) and (6) hold, takes the form

Rk(r)+J‘:7c(r)¢ﬂ(:-r)dr:gﬁ”(r), 120. (7)

With the white noise assumption, the formula for the
solution takes the striking form (apparently first noted

by Yovits and Jackson (1960))
fw)=1-R"™ ). (8)

In other words, the canonical spectral factorization
completely defines the estimator in the additive white
noise case!

One might justly wonder about the physical signifi-
cance of the canonical factorization, and the stochastic
problem allows a nice (and far reaching) interpretation,
first given by Bode and Shannon (1950), and independ-
ently (and in somewhat more general form) in a lesser-
known paper of Zadeh and Ragazzini, also appearing in
1950. These authors noted that passing the observations
process y(-) through a linear filter with transfer function
V~!(w) gives us a process e(+) with power spectrum
(using well-known formulas),

D, = ‘P"'(m)ibyy(w)‘l"*(—w) = [

Therefore, we can interpret the first term ‘P“l(cu) in the
general Wiener—Hopf formula (3)
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as allowing us to replace the observations process y(-)
by a much simpler stochastic process e(+), for which the
problem of estimating a related stochastic process s(*)
turns out to be much simpler: when ¢;,(:) in the
Wiener-Hopf equation

¢1z(f)=_[0?bn(r-—r)k(r)dr, t20

is a delta function, the solution is immediate:

k(1) = ¢a(0), 1 2 0.

One might wonder if there is a ‘loss of information’ in
going from the original observed process y(-) to the
white process e(+)? The answer is no, because by the
fact that the canonical factor W(s) and its inverse
¥~'(s) have the property that they are analytic in the
RHP, one can pass (recall the Paley-Wiener results
quoted in § 3) from y(:) to e(-) and from e(-) back to y(-)
by causal and stable linear operations. Since

FHD, (0)) = Ee(t + De*(t)=6(r)=0,7 # 0

the value of e(-) at any instant 1s uncorrelated with 1ts
values at any other instant, and therefore every observa-
tion, e(t), brings new information, which cannot be said
about a (corrected) nonwhite process. The process e(*)
is called the innovations process of y(+); we shall return
to it in a more general context in § 8. The innovations
concept has been useful in extensions of Wiener filter-
ing theory to nonstationary processes and to nonlinear
problems, see e.g., Kailath (1970), Davis (1977) and
Fujisakt er al. (1971). We may note that, Kolmogorov’s
more general approach to the discrete-time prediction
problem (1939), (1941) was based on the use of the in-
novations process, which avoids (or rather trivializes, as
we noted earlier) the use of the Wiener-Hopf equation.
Thus somewhat ironically, Kolmogorov’s more abstract
approach ultimately became more powerful than
Wiener’s more concrete approach, a phenomenon,
mathematicians may be pleased to know, that 1s not un-
common In applications.

6. Extensions: Matrix spectral factorization

Wiener’s monograph inspired various attempts at ex-
tensions — to finite-time nonstationary problems, and to
vector-valued processes in particular, When observa-
tions are only available over a finite time, say (0, 1)
rather than (-, t), the W—H equation is replaced by one
of ‘W~H type’,

11(!,5)+J;h(r,r)¢(r-—s)dt=¢(f"f), O<sss<t. (9)

No general methods were or are known for its solution,
and a vast literature developed on various special cases,
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tricks, etc; so much so that a 1958 editorial by P. Elias
urged no more work on ‘Two Famous Papers’. One ge-
neric title was ‘The Optimum Linear Mean Square Filter
for Separating Sinusoidally Modulated Triangular Sig-
nals from Randomly Sampled Stationary Gaussian
Noise, with Applications to a Problem in Radar’. (The
other: ‘Information theory, Photosynthesis and Relig-
ion’.) |

The apparent mess was cleaned up by the use, by R. E.
Kalman in 1960, of the state-space description of proc-
ess with rational spectral densities. Such descriptions
are actually of much older vintage, see, e.g. a paper by
and were used by Wang and Uhlenbeck (1930) on
Markov models for noise processes. Doob wrote two
long papers on them in 1944 and 1949 but, alas, did not
mention them in his very influential 1953 book! Had he
done so many developments might have occurred much
earlier.

The so-called Kalman (or sometimes Kalman-Bucy)
filter has been widely discussed 1n a host of a papers and
textbooks, e.g., Anderson and Moore (1979), Kailath
(1981). It gains its power, as just noted, from the intro-
duction of state-space models, which turns out to be
equivalent to modelling stochastic processes as linear
combinations of the components of a vector-valued
Markov process. Briefly, we model a scalar process s(-)
with an n-th order rational spectral density as

{s(t)= Hx(t)

()= Fx()+u(t) ° 2 1o

(10)

where H € 6’1""_ F e ™" are known matrices, u(+) 1s an
n X 1 vector-valued zero-mean white noise process, with

(u(t), u(s)) & Eu()u(s)* = Qo(t - s),
and the initial state, x(ty), is such that

(x(tﬂ)! 1) = Ex(fo) = 0: (X(f{)), X(fo)) = n(}:
(x(t), u(®)) = 0. |

The matrices @ € £7" and 1, € ¢ " are also assumed to
be known.

We use the inner product notation to follow Kol-
mogorov in assuming that (zero-mean) random variables
defining a (second-order) stochastic process live in a
Hilbert space (or Hilbert module, when the random vari-
ables are vector-valued). Of course we are stretching
this formulation when we deal with white noise proc-
esses, but rigor can be restarted by regarding a white
noise process as the formal derivative of a process with
orthogonal increments.

Though the linear system relating the stochastic input
process u(*) to the output stocastic proces is time-
invariant, the process s(+) will in general be nonstation-
ary, because the ‘transients’ arising from the fact that
the input is switched on at time fp and does not begin 1n
the remote past. In fact, it is not hard to see that
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[1{6) = {x(0), x(1))
will obey
M) = FII{D + T F* + Q, Tl(rg) = 11,. (13)

However, when F is ‘stable’, i.e., all its eigenvalucs
have strictly negative real parts, then it turns out that the
process s( ) will be stationary if the initial state variance
is chosen as

[I(ty) = I1

where IT is the unique nonnegative definite solution of
the (Lyapunov) equation

O=FITT1+T11F*+ Q.

Now since we have introduced matrix notation, we can
as well take the step of regarding s(-) as a p X 1 vector-
valued process, so that H € €7*". The filtering problem
is now a ‘multichannel’ problem of attempting to find

§(t)= the linear least-squares estimate of s(r) given
{v(t), tg = 1 < t},

(14)

where
y()=s(t)y+uv(r), t=0 (15)
and ¢(+) is a white noise process such that
u(t) u(s)_: o 3
<[z~(r) ] Lm > [s* ] or—s), (16)

where Se " and R e 7" are also assumed to be
known a priori. The presence of the additive white noise
1s essential to get useful results, and so it is assumed that
R is strictly positive definite, R > 0.

It 1s widely believed that the reason for the greater
scope of the Kalman theory (applying to vector-valued
but finite-dimensional) stationary processes also to
(finite-dimensional) nonstationary process 1s 1n fact that
it starts, as above, with a model for the process s(*)
rather than with power-spectral or covariance data.
However this 1s not true — the Wiener and Kalman ap-
proaches become equivalent if one carries over the state-
space characterization of the process to its power-
spectra and/or covariance functions.

We shall illustrate this now by using the state-space
model to solve a problem not satisfactorily resolved by
Wiener and several later researchers — finding an effective
way of computing the canonical factorization of a rational
powcr spectral density function matrix. We start by noting
that since the transfer function from the input white noise
processes {u(*), ¢(+)} to the output process y(+) i1s

[H(iol - F)™ 1), (17)

the power-spectral density function of y(+) can be com-
puted as

D, () = [H(iwl - FY™" 1]

[Q S] [(-——icu!-—F*)'IH*]l

S* R I (18)
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An altcrnative expression can be found by taking the
Fourier transform of the covariance function:

¢,(T) = {y(1), y(t— r)) =

RS(t — 1) + HEF *N1(z) + N*" TH*1(1), (19)
where
N=IIH*+S (20)
and 1(-) is the (Heaviside) step function
1 >0
1(¢)=31/2 t=0
L 0 <0
The Fourier transform of ¢,(*) 1s
®,, (w) = [H(iw] -~ F)™ 1]
[}5* ?{] L(_m_f*)_lm]. (21)

Comparing (18) and (21) shows that different ‘central’
matrices could be used to specify ¢ (w), some nonnega-
tive definite as in (18), while, the one in (21) is indefi-
nite. It is natural to ask how we can characterize the
nonuniqueness of the central matrix? The answer is that
we can use any central matrix of the form

[Q+ FZ+ZF* S+ZH*|

S*+HZ R ] 4577

M = (22)

i.e., where Z is any Hermitian matrix. The choices Z=0
and Z = IT give the previous expressions (18) and (21).
The fact that any such M yields &, (w) can be verified
by a direct (but tedious) calculation. However, a nicer
and more useful derivation can be obtained by allowing
the random variables to live in an indefinite (Krein
space), rather than in Hilbert space.

In a Krein space we can have elements such that {u, u)
is indefinite or even zero. For example, we could have

. _uo(t) —uO(j-)- QO SD]
<-UU(I)]'_UU(S)_>%[SO* RO O(t—s)

:[h?* g]é(t—-s).

In view of this, let us add to the original {u(-), v(*)},
elements {4°(+), #°(+)} such that (in an obvious nota-
tion)

(23)

{x(r)+xo(;) = F(x()+x0(O)+Cun+u0(D) 0
y(£)+yo(t)=H(x(t)+x0(t))+v(t)+10(1) (
where
17,0
<[:((:)) jﬂ((zr))]):‘)a“d (¥°(8),y%(1))=0. (25)

This can be done using earlier formulas (see (5)—(6)) to
note that
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skl . gl L T e Al . "

(@) = [H(iw] = FY" 1]

0 [TOH *+80 || (—iw] — F*)-1 H *
LHTIO+50% RO I » (26)
where IT° = T1°* is such that
FII° + 1I°F* + 0° = 0. (27)

From these we conclude that ®,y.(@) will be 1dentically
zero if we choose

S° = -11°H*, Q° = -FTI° = TI°F* and R° = 0.

(28)
Finally setting Z = ~ I1; gives
<[u(t)+u0(t)] [u(s)wﬂ(s)b
v(t)+v0(t) I’ Lo(r)+v0(7)J,
O+00 §+50
=[s*+so R+R0}5(’"5)

[Q+FZ+ZF* S+ZH*
S*+HZ R .

]6(t—s)éM6(r—s) (29)

exactly as claimed above (see (22)). We see now that the
arbitrary matrix Z can be interpreted as the (negative of)
the state-variance matrix of a process with zero s-
spectrum. However, so far we only have a formal calcu-
lation. The significant theorem 1s the so-called KYP
Lemma (see Willems and Trentelman for a recent dis-
cussion):

Theorem (KYP Lemma) When ®,(s) >0, s =jw, then
there exists a Z = Z* such that the central matrix is non-
negative definite (i.e., it is the covariance matrix of a
collection of genuine random variables).

¢ We do not need F to be stable; a weaker condition
from linear system theory, a subject developed 1n the
engineering literature of the last 30 years, will suf-
fice: the pair {F, H} should be detectable, i.e., it
should be such that [H*s] — F*], s = 0 + 1w, should be
full rank for all o0 = 0. Here however we shall, for
simplicity, stay with the assumption that F is stable so
that we are dealing with a stationary process y(-).
There are important corollaries characterizing matrix
positive-real (Caratheodory) and bounded-real
(Schur) functions, which are widely encountered 1n
applications. We note also that the Krein space inter-
pretation introduced above can be used to give a
simple geometric proof of the lemma; 1t also Icads to
several other results, ¢.g., unifying !/, and 11, control
(see, e.g., Hassibi et al. (1996)).

However while the KYP Lemma 1s an umportant result,
which is why we mentioned it here, 1t 1s not necessary to
use 1t to obtain a spectral factorization of P, (w). To
this end, note that although we cannot make any asser-
tions on the positivity of the central matrix M, defined
(28), the fact that
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G, (0)=[H(iwl- F)-1 I] M[(“i“” "f A *]:»o

(30)

shows that M has at least p positive eigenvalues. [Note
that, for each w, the above expression is the product of a
pX(n+p), an (n+p)xX(n+p)and an (n + p) X p ma-
trix, which 1s positive definite (i.e., has p positive ei-
genvalues). Therefore the central (n+ p) X (n+ p)
matrix, M, must have at least p positive eigenvalues.]
Now that we have shown that the matrix M has at least
p posttive eigenvalues for all choices of Z, it is interest-
ing to ask whether Z can be chosen so that M has only p
positive eigenvalues and no negative eigenvalues, i.e., if
Z can be chosen so that M has minimal rank p. To see
that this 1s indeed possible recall the easily verified

factorization (recall that we have assumed the inverti-
bility of R).

M=[Q+ FZ+ZF* S+ZH*]
S*+HZ R
[0 56 R4 91 31
where
AZ)AQ + FZ + ZF* — (S + ZH®)(R(S + ZH®* (32)
KA+ ZH"R™. (33)
Therefore @,,(w) in (30) can be written as
D, () = H(io — F)"' A(Z)(~iw — F*) " H* +
[[ + H(io — F)"'KIR[I + H(iw — F)'K]* (34)

The second term on the RHS is p X p and non-negative
definite, so we can immediately obtain a factorization by
choosing Z so that 1t satisfies

0=AZ)=FZ+ZF*~ (S +ZH*)R'\(S + ZH*)*
(35)

The only 1ssue is whether the resulting spectral factor
has a well-defined inverse, viz., one that when extended
into the complex plane s analytic in the right half
plan (cf. (2)). Therc 1s an interesting result here, The
nonlinear algebraic equation (35), which for reasons
explained below 1s called an Algebraic Riceati Equation
(or ARL), has many solutions. However it can be shown
that when F s stable (or even just when {F, H} is de-
tectable), there 1s one and only one non-negative solu-
tton, say I”; morcover, this solution is such that the
speetral tactor

V() B[HGI-F)Y'K+ R, K=S+ PHYRY (36)
and 1S tnverse
sy AT - FYYKRY 4 RV
=RV = 1(sl - F + K1 'R, (37)
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are both analytic in the right half plane. There are sev-
cral computationally effective methods of finding the
desired nonnegative definite solution of the ARE —a
good source is the reprint volume edited by Bittanti et
al. (1995). So the introduction of the ARE, first done in
the Kalman theory, overcame what had been regarded as
one of the stumbling blocks to the Wiener theory. A
minor quibble is that the factorization is expressed in
terms of the parameters {F, G, H, O, R, §} of a particu-
lar model for the process rather than in terms of the
spectral data. Now for the state-space model, the covari-
ance and the spectral density are fixed by (¢f. (19)-(21))
by {H, F, N}. To use this data, all we need to do is to
choose the central matrix M not as in (31), but as (cf.

(19)-(22)).

[O+ FZ+ZF* N+ZH *]

N*+HZ R (38)

Then proceeding as before, the rank of this matrix can
be dropped by choosing Z so that it satisfies

0=FZ+ZF*— (N + ZH*R (N + ZH*)* (39)
which will lead to a factorization of the form
&, ()= + HI- FY''(N+ ZHHIR'[ ... 1* (40)

The particular choice that will give a factor with an in-
verse that 1s analytic in the right-hand plane can be
shown to be the unique negative semidefinite, say -ZX,
solution of the ARE (39). The corresponding factor is
therefore

Y(s)=[I+ H(sI - F)"'KJR'", (41)
where we define
KAN-3IH* (42)
and
220,0=FZ+ZIF*+(N-ZH*R'(N-IH** (43)

The reader may have wondered that we used the same
symbols W(s) and K as in the earlier formula (36) — the
reason is that the canonical factorization is unique!
[This 1mplies the interesting identity IT= P + X, which
we shall not explore here.]

To close the story of Wiener filtering, let vs note that
with the canonical factor in hand, we can really write
down the optimal filter by using (8) and (37)

£(s)=1-R"™W'(s) = H(sI - F + KH)'K (44)

where K can be found either from the model parameters,
as in (36), or from the covariance/spectral parameters,
as in (42). This is a reasonably explicit formula for the
optimal filter, but another advantage of the state-space
formulation is that we can readily write down a state-

space model for the filter:
x(1) =(F=-KH)£(t) + Ky(t), £(15) =0 (45)
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$(t)y=Hx(1) (46)

as can be verified by checking that the transfer function
from y(-) to § () 1s exactly as in (44). We have used the
notation £ () for the state-variable in (45), because in
fact we have a bonus: X (-) ts the linear least-mean-
squares estimate of the state x(-) itself (under the as-
sumption that { F, H} is observable, i.e., [s] — F*H*] has

full rank for all s € O).
We close with some remarks that, inter alia, will ful-

f11l our promise to explain the name ARE. The first re-
mark 1s obtained by going back to our state-space
model, {10) seq. Observe that stationarity arose from a
particular choice of initial condition, TI(#y) = IT defined
as the unique matrix such that

[1>0,0=FT +TF*+ Q

For any other choice of Il(%), or if F is unstable (so that
(14) will not have a solution IT 2 0), the process s(-) will
be nonstationary, with covariance function

Es(t + T)s*(t) = He'" N(x), T =2 0
where |
N(t) = TI(OH*, T1(¢) = FTII1(¢) + TI())F* + O,

In turns out that the previous discussions can all be ex-
tended by now working in terms of covariance functions
rather than power-spectral-density functions. The key
change is that instead of the algebraic (Riccati) equation

P>20,0=0+ FP + PF*KRK*, K = (S + PH*)R™
we shall have the matrix Riccati differential equation,
P(t) = Q + FP(t) + P(t)F* — K()RH*(2), P(to) = 1(2,)

K() &(S + PO)H*R™

When the state is one dimensional, the resulting quad-
ratically nonlinear equation is the one apparently first
studied by Jacopo Francesco, Count Riccati, and later
introduced by Legendre and others into the calculus of
variations. It was introduced into control theory by R. E.
Bellman (1957) and the matrix version by especially
R. E. Kalman (1960).

Explicit analytic solution of the Riccati equation is
impossible in the matrix case. But fortunately, this is a
(nonlinear) initial value problem, so it can be solved via
a discretization scheme, e.g., in the naive way,

P(t+0)=P(1)+3S[0 + FP(1)
+ P()F* - K(DRK*(1) + 0(8),t=0, 1, 2, ...

Now, an important observation is that once the need for
some computer-based iterative algorithm is realized, one
might further guess that there 1s no particular need to
restrict oneself to time-invariant systems: one can just as
easily consider time-variant models,

x(=FOx() +v(), t =t
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y(8) = H@®)x(?) + v(1)
with
S(t)

<[:((:))]’ I:::((.:))] >= [ﬁ((?) R(t):la(t —5).

Now the (Riccati) 1teration is still as before,

P(t +0) = P(t) + o[Q() + F(OHP(®) + ...]
+00),:t=0,1, 2, ...

except that we need to store/know the values of the
functions { F(-), Q(-), ...}.

We have thus arrived at the Kalman-(Bucy) filtering
algorithm. There 1s a vast literature on i1t, with several
significant results and issues. Here, we go on to a differ-
ent kind of extension of Wiener’s results, involving fi-
nite-time discrete time series. That discussion will lead
us to a concept called displacement structure, which
actually had 1ts roots 1n studies of the Riccati equation.

7. Beyond state-space models/displacement
structure

In one of several different variations of Wiener’s prob-
lem, his colleague N. Levinson in 1947 studied a finite-
time discrete prediction problem, where the Wiener—
Hopf equation was replaced by a set of linear equations
with a Toeplitz coefficient matrix. He proposed a fast
recursive solution, now known as the Levinson algo-
rithm, very widely used 1n geophysical data processing
(beginning i1n the mid-fifties) and i1n speech processing
(beginning in the mid-sixties). Kolmogorov’s (1939)
formulation of the prediction problem gives an interest-
ing insight into this algorithm, and led to connections
with the work of Szego (1939) and Geronimus (1939)
on orthogonal polynomials, of Schur (1917) on H”
functions, and then to new results on Toeplitz-like ma-
trices and more generally matrices with displacement
structure (see below).

The Kolmogorov Isomorphism: The identity

dF(z)
(ykiyJ’):Eytyf =rk-l=;zkz_l 2717 =(z*,z! )2

allows one to form an isometric mapping between the
Hilbert space of random variables spanned by {y;}, and
the Hilbert space of functions on the unit circle spanned
by the {Z*}).

Then the finite-interval prediction problem: find {a; ;}
to minimize

E “}'k +a; 1Ye-1¥F ...+ A mYi-m "2

is equivalent to the polynomial approximation problem:
find {a,,} to minimize

dF(z)
2n2

;12* +ay 2kt A+ Ay 2k |2
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[t turns out that around 1920 Szego had shown that the
minimizing polynomials

1

Am(7) = z" + am,lz'"" + ...+ dym

had the nice property that they were orthogonal to each
other w.r.t. the measure F(z). Szego and others went on
to make many studies of these orthogonal polynomials.
Among other results, in 1939, Szegs and Geronimus
independently discovered that these polynomials obeyed
a two-term (rather than the usual 3-term) recursion:

= #
m +1(2) = Ay =k 412 am(2), ap(2)
= the reciprocal polynomial

where K, . 1 = —aQm+1 m+ 1, the constant term in a,, , (2).
This 1s 1n fact almost the same as the recursion discov-
ered by Levinson 1n 1947, except that to obtain a true
recursion one needs to be able to compute £, ,, in terms
of {F(z), a,(2)}. This could have been done by Szego
or Geronimus, had they been 1nterested in actual compu-
tation; however they were more interested in the asymp-
totic properties of the polynomials (in fact, a famous
Szegod formula ts just the formula discovered by Kol-
mogorov and Wiener for the irreducible error in predic-
tion). A survey of the connections between orthogonal
polynomial theory and linear estimation, and their fasci-
nating continuous-time analogs, can be found in Kailath
et al. (1978).

Later 1t was discovered that a more farreaching con-
nection could be made with some of the work of
I. Schur, who was well ahead of his time with his inter-
est in computation. In 1917, he wrote a remarkable pa-
per giving a computattonally effictent solution to the
Caratheodory moment problem that, 1n eftect, also gave
a fast algorithm for factorizing Toeplitz matrices; Lev-
inson’s algorithm factorizes the inverse of a Toeplitz
matrix. It turns out that Schur’s algorithm offers an al-
ternative to the Levinson algorithm: it 1s somewhat
slower for serial computation, but can be much faster for
(software or hardware) parallel implementation!

There are many aspects to these algortthms arising
from pursuing the prediction problem. One of the most
fascinating is the concept of displacement structure.
One way of motivating it is by asking questions such as
the following:

If there are fast algorithms for factorizing Toephtz
matrices, what about factoring non-Toephitz matrices
that are known to have Toeplitz inverses? Simularly,
should 1t be much harder to factor the non-Toephtz ma-
trix T\ 7, or T\ 157" Ty than T, (or T or T)) alone?

The answer is that these problems 1n fact have the
same order of complexity as purcly Toeplitz problems
do. The reason is that what allows fust algortthms tor
Toeplitz matrices is not their Toeplitzness, which s lost
under inversion and under multiphcation, but something
called displacement structure. R has  displacement
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structure it R ~ FRA, or more generally QRA ~ FRA has
tow rank for appropriate (low complexity) matrices (2,
A, F. A}. The tnterested reader can verify that when
F=A*=/Z, the lower shift matrix with ones on the first
subdiagonal and zeros elsewhere, a Hermitian Toeplitz
matrix and its inverse have displace rank less than or
equal to 2. It 1s not hard to show that products, inverses
and Schur complements essentially inherit the displace-
ment structure. This fact can be exploited to obtain a
generalized Schur algorithm for the fast recursive fac-
torization of such matrices. Moreover there is a very
useful physical structure — a cascade network or general-
1zed transmission line - that can be associated with the
generalized Schur algorithm, a fact that has lots of im-
plications and applications. We may mention, among
others, problems in linear algebra, inverse scattering,
coding theory, complex interpolation, matrix comple-
tion, ctc. Surveys of these results can be found in
Kailath (1987) and Kailath and Sayed (1995).

To end this account, though we should note that the
initial stimulus for the development of the concept of
displacement structure came not from linear algebra, but
from the Wiener—Hopf equation itself, as it was further
studied by the astronomers V. A. Ambartsumian (1943)
in the former Soviet Union, and S. Chandrasekhar in the
USA. It will take too long to make those connections
here, and we refer the interested reader to the reviews
Kailath (1991), Sayed and Kailath (1995) for some the
history and for some of the later developments, includ-
ing hnks back to the work of I. Schur.

8. Nonlinear estimation

In the late 1950s, Wiener gave a series of lectures on the
problem of nonlinear least-mean squares estimation,
which were transcribed into a monograph (Wiener
(1958)). Wiener proposed to use a so-called ‘Volterra
series’ characterization of nonlinear systems as a sum of
linear + quagratic + ... systems. However this approach
had several limitations, especially of computational
complexity and the difficulty of approximation (how
many or which terms should we keep for a particular
nonlinear system?).

The success of the state-space models for the linear
problems led to a significant effort to try to obtain
similar results for the nonlinear case. Thus suppose we
have a nonlinear system, in state-space form,

{ x(1)= f(x(2),1,u(t)),t 20
y()=h(x(1),t)+uv(t)=s(t)+uv(t), say.

The minimum mean-square estimator of x(¢) given {y(z),
T <t} 1s no longer linear, and its computation requires
full statistical knowledge of the non-Gaussian processes

x(.), z(.) and y(.):
§(6)=E[s()}F {y(r), T < t}].
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When {x(.), s(.), v(.)} are jointly Gaussian, one has the
Kalman filter recursions. But in general, all has an as-
cending chain of coupled nonlinear equations for which

no really satistactory practical algorithms, or approxi-
mations, have been found. Therefore the nonlinear

problem is effectively still open.
However there have been several interesting theoreti-

cal results. One set arises from the introduction of ideas
from martingale theory (with some of the results now
being pursued in finance theory and on Wall Street).
Martingale theory first enters through the fact that the
white Gaussian measurement noise, v{-), of the engi-
neers is the formal derivative of the special process in-
troduced by Wiener in his study of Brownian motion:

{
Lv( T)dr=W(r), the Wiener (-Lévy) process.

The martingale properties of W(-) lead to a striking
generalization of the innovations process first intro-

duced in the linear theory. Let us recall from § 5 that
with (scalar) observations containing white noise,

y(1) = (1) + v(2), {v(), v(7)) = O(t — 1)

the optimum linear filter for finding § () has transfer
function (note that now R = 1 in (8))

K)=1-¥YYw).
This implies in the ttme domain that

§(t)=y(1) - e(t)

or that the innovations can be expressed as

e(ty = y(t) - § (1)

Now when we deal with nonlinear operations on white
noise, the formal manipulations become harder to jus-
tify: linear operations on white noise give smoother
processes, but what is the square of white noise? There-
fore one now works with integrated processes,

Y(r)4 J:y(r)d'r=Es(r)dr«-l-_Ev(r)dr:J:s(r)dr+W(t)

and uses the Ito theory of stochastic integrals, especially
as developed by the Japanese and French schools (see

¢.g2., Meyer (1973)).

In this language, one can show (see Kailath (1971),
Meyer (1973)) the following: Let

f

Y(r)=Ls(r)d‘r+W(r),

with
T

_LEIs(t)dr<oa,E[W(t)—W(r)Z(r)=0, 1>,

Then, the process E(-) defined as
H
E(t)=Y(t)—_L§(r)dr
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where
S(OR2E[s()F{y(1),1<t}]

1s also a Wiener process w.r.t. the (nested) family of

sigma fields (F{Y(r), T < t}. The main idea of the proof

1s to show first that £(+) 1s a martingale with respect to
these sigma fields, and then to show that E(-) and W(-)
have the same ‘quadratic variation’ (again a concept
introduced by Wiener). Then a theorem of Levy’s gives
the result. This is a nice result, since the process y(*)
might be much more complicated than E(*); it shows the
power ot the assumption of additive white noise. Now in

the linear case, results from the theory of integral equa-
tions enable us to show that (Kailath (1968, 1972))

FIE@), T <t)=F{Yx),1<1},0<t=<T

so that the process {Y(:)} and {E(-)} are replaceable
cach by the other, without any loss of information. As
mentioned earlier, this was the 1idea behind the innova-
tions approach to the Wiener filter (Bode-Shannon
(1950), Zadeh-Ragazzin1 (1950)); in the nonstationary
finite-time case, the above result allows for a similar

approach to the Kalman filter and several related prob-
lems (Kailath (1970), Davis (1977)).

Therefore an important question is under what condi-
tions this equality of sigma fields holds in the general
case. The problem turned out to be quite difficult (Benes
(1976)) and only after attempts by several researchers,
did Allinger and Mitter (1981) succeed in proving the
equality for the case where s(+) and W(*) are independ-

ent of each other and J{;’Els(r)lzdt < 00,

However even without the equivalence, the process
E(-) leads to several nice results. One 1s that even
though the sigma fields generated by E(+) and Y(-) may
not be equivalent, Fujisaki er al. (1972) showed that any
function measurable w.r.t. the Y sigma fields can be
written as a stochastic integral w.r.t. the Wiener process
R(+). This then allows for a simpler description of the
nonlinear filtering equations: however as mentioned
before, they are not useful for actual computation.

Another application that exploits only thc fact that
E(-) is a Wiener process i1s a gencralized Cameron-
Martin formula for the Radon-Nikodym derivative of the
mcasurcs Py and P, induced by the processes Y(-) and
W(-):

dp,

: T-: ' IJ.T*': 2
dP, —CXPJU 5(f)dy(f)—2 {)IJ(I)IH dr.

This expression has uscful implications for the problem
of detecting the presence or absence of a random signal
s(+) in the presence of noise. When the signal s(+) is
deterministic  {and  thercfore  known a  priori)
§(-) = s(), this is a result of Camcron and Muartin
(1944). It is an interesting and usclul fact that for ran-
dom s(+) the deterministic formula still apphies with the
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unavailable random signal s(-) being replaced by the
observable least-squares estimate § (+). This allows a
lot of the 1nsights and results of estimation theory to be
carried over to sitgnal detection theory (Kailath (1969),
Davis and Andreadakis (1977)). We may remark that the
Cameron-Martin formula arose as a theory of ‘linear
changes of variables’ in Wiener space (the space of sample
functions of a Wiener process). The generalized Cameron-
Martin formula follows from a nonlinear version of this
theory introduced in a seminal paper of Girsanov (1960),
which has since been much studied and extended.

9. Concluding remarks

This has been an account of some of the ways in which
Nobert Wiener’s work and ideas have influenced several
engineering developments. The key ideas were his em-
phasis of the statistical nature of the communication
process and his introductions of the use of optimization
criteria 1nto system design. I should hasten to add that
many other notable researchers (Shannon, Rice, Tukey,
Bellman, Pontryagin, Kalman, to name just a few) had
major roles in the post-1942 story. Finally, Wiener’s
own specific mathematical contributions to mathemati-
cal engineering are too numerous to cover in a simple
article. Here I have described, in a very sketchy way and
with some focus on things I know best, some of the wide
range of 1deas and techniques stimulated by Wiener’s
work on prediction and filtering.
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