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Quantum chaos in Rydberg atoms: A
quantum potential approach
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The quantum signature of chaos in Rydberg atoms
has been studied using a quantum theory of motion
and quantum fluid dynamics. A hydrogen atom in
the electronic ground state (n = 1) and in an excited
electronic state (n =20) behaves differently when
placed in an external oscillating electric field. Tem-
poral evolutions of Shannon entropy, density corre-
lation, phase space distance function of Bohmian
trajectories and associated Kolmogorov-Sinai en-
tropy for these two cases show marked differences.

- CLASSICAL interpretation of quantum mechanics 1s as
old as the quantum mechanics itself. In the Madelung
representation’ the time-dependent Schrédinger equation
for a single particle of mass m moving under potential
V(r), viz.

[~(7*12m)V: + V(D1 Hr, 1) = ihd Yot (1)

is transformed into two-fluid dynamical equations.
Substituting the following polar form of the wave func-

tion
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Hr, 1) = R(r, t) exp (15(r, t)/h) (2)

in eq. (1) and separating the real and the imaginary
parts, one obtains an equation of continuity

dp/ot + V+j =0, (3a)
and an Euler-type equation of motion |
av/at + (v- Vv = —(1/m)V(V +V,,). (3b)

In eqs (3) the chérge density, p(r, t) and current density,
j(r, t) are |

p(r, 1) = [R(r, D]° (42)
and
j(r, 8 = p(r, )v(r, 1). (4b)

where the velocity v(r, f) can be defined in terms of the
phase of the wave function as

v(r, t) = (1/m)VS(r, 1). (4¢)

The quantity V,, appearing in eq. (3b) 1s called the
quantum potential or Bohm potential of hidden variable
theory” and defined as

Vou = —(1*12m)VRIR. - (5)

Therefore, in this quantum fluid dynamics' the overall
motion of the system under consideration can be thought
of as the motion of a ‘probability fluid’ having density

p(r, 1) and velocity v(r, t) under the influence of the ex-

ternal classical potential augmented by a quantum po-

tential, V.
For the ground state of a many-particle system, p(r, 1)
contains all information’. In a time-dependent situation
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also the time-dependent density functional theory*” as-
serts that any physical observable can be expressed as a
functional of p(r, 1) and j(r, t) and thus allows us to for-
mulate the dynamics in terms of ‘classical-like’ 3D

quantities. Although Madelung transformation in terms

of p(r, t) and j(r, t) is not straightforward in a many-
particle situation, we can make use of the time-
dependent density functional theory in constructing two
fluid-dynamical equations in 3D-space. This formalism
is termed as quantum fluid density functional theory®
which has been applied in understanding ion-atom col-
lisions®™®, atom~field interactions”'? and electronegativ-
ity'"!%, hardness'>'* and entropy dynamics'® in a
chemical reaction.

Quantum potential plays a crucial role in the quantum
‘theory of motion" as well. In this representation of
quantum mechanics developed by de Broglie'® and
Bohm'’, the overall motion of the system 1s understood
in terms of the motion of a particle experiencing forces
originating from the classical and quantum potentials.
The Newton’s equation of motion for this particle
guided by a wave (represented by ¥{r, 1), a solution to
eq. (1)) can be written as

(0/ot+ F - V)(mr)=-V(V+ V), - » (6)

At a particular instant the solution to the time dependent
Schrodinger equation (1) fixes the velocity of the parti-
cle (cf. eq. 4c) and, hence, for a given initial position
the particle motion can be studied through the solution
r(t) to the equation

v(r, )= F = (Um)VS(r, Dy < . (4c)

Theories based on quantum potential idea have been
applied in solving *various physico-chemical prob-
lems>'*¢, Because of the presence of nonlinearity and
also the ‘classtcal language’, these theories have been
found'>?1#2°9323% 15 be helpful in understanding the
quantum domain behaviour of a classically chaotic sys-
tem which is described as quantum chaology by Berry™.
The quantum theory of motion, however, allows one to

study the quantum chaos in a system without any resort

to its classical domain dynamics'”.

We adopt here a quanturn potential approach to study

the chaotic dynamics of a typical quantum system, viz. a

Rydberg atom in an oscillating electric field. Of late,
these systems have been considered to be ‘veritable gold
mines for exploring the quantum aspects of chaos’®. It
has also been discussed’’ that depending on the fre-
quency and field intensity, hydrogen atom exhibits order
to chaos transition when placed in an external oscillating
field. Since hydrogen atom is one of the simplest possi-
ble solvable quantum mechanical systems and 1ts classi-
cal mechanical counterpart, a Keplerian system, is
known to exhibit chaotic dynamics®® in presence of ex-
ternal field, we try to investigate the possible quantum

stgnature of chaos in an electronically excited hydrogen
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atom in presence of an external field. Both theoretical®
and experimental® studies have been carried out on this
system to understand the chaotic behaviour associated
with quadratic Zeeman effect. For a beautiful review on
this subject see ref. 36. In the present work we study the
time evolution of Wi, and ¥, wave functions of hydro-
gen atom placed 1n an external oscillating electric field
with @ = 5 and for both F =0 and F = 5. We apply the
quantum theory of motion in gaining insights into the
possible chaotic dynamics in electronically excited hy-
drogen atom subjected to an external electric field’®”’.

The time-dependent Schrodinger equation (in a.u.) for
the present problem in cylindrical polar coordinate sys-
tem (P, z, P)is '

[-V22 + V]W=io Yot

(7a)
where the potential V is given by
V = -1/r + Fzcoswt. (7b)
Making use of the following transformations
y=p¥. (8a)
p=x (8b)

and Integrating over 0 < ¢ < 2x, eqs (7) turn out to be
[3/4x°3y/3x — 1/4x* 8*y/ax* — 3%y/82%]
~ [1/x* = 2V]y = 2idy/at. (9)

The above equation is solved as an initial boundary
value problem using an alternating direction implicit
method*'. The resulting tridiagonal matrix equation is
solved using Thomas algorithm, The mesh sizes adopted
here are Ax = Az=0.4 a.u. and-Ar=0.01 a.u., ensuring
stability of the forward-time-central-space type numeri-
cal scheme used here. Note that each alternating direc-
tion implicit cycle corresponds to 2Ar and atomic units
of length and time are 0.5292 X 10°m and
2.4189 X 107" sec respectively.

The initial and boundary conditions associated with
this problem are:

att =0, y(x,. 2) is known for YV x, z, (10a)
¥(0, 2) =0 = y(, 2) V2t (10b)
y{x, + ) =0 VY x, t. (10¢)

The numerical scheme is stable®® due to the presence of

i =+/~1. As a further check of numerical accuracy we

have verified the conservation of norm and encrgy (in
zero ficld cases). The wave function 15 moved forward
up to the end of simulaton (NAt =7 a.u.) and then taken
back to its initial position where the original profile is
reproduced well within the tolerance Iimit of the present
calculation, We could not, however, perform the long
time simulation because of our inadequate computa-
tronal facilities.
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The dynamical quantities calculated 1n the present
work are as follows:

a) Shannon entropy given by
S =-kfpin (p)dr,

where &k 1s the Boltzmann constant.

b) Density correlation function defined as
C = fp'"(r, 0)p'*(r, ndr.

We have also solved eq. (4c) using a second order
Runge-Kutta method to generate the ‘quantum trajec-
tory’ of a particle for a given inittal position. Now, we
are in a position to analyse the sensitive dependence on
initial condition, a characteristic of a chaotic system.
We can change the initial condition in two ways: 1) by
shifting the wave function slightly and 11) shifting the
initial position of the particle slightly. In the first case
the time-dependent Schrodinger equation 1s solved with
both Hr,t=0) and Hr+ A, t=0) as inputs, A =0.01
while the second case deals with the solution of eq. (4¢)
with two different initial positions of the particle,
(p,z)and (p+dp,z+dz), dd=0dz=0.01 Initial mo-
mentum of the particle 1s taken as zero in all cases. We
study the time evolution of phase space distance (D) for
the corresponding quantum trajectories defined as®'~'

D) = ((x(1) = x2(1)* + Py (1) = Pi())]
+01(1) = y2(0)" + (P, (1) = p,, (D',
-where (x, p,, y, p,) refers to a point 1n phase space.

We also calculate the associated Kolmogorov-Sinai
entropy as defined’'~* below

(11a)

H= ) A, (11b)
A >0
where the Lyapunov exponent is given by’ '’
A=hm1/¢tIn(D(t)/ D(0)).
D@~ 0 (11c)

‘Quantum dynamics 1s chaotic if in a given region of
phase space the flow of trajectories, according to the
Hamilton-Jacobi formulation of quantum mechanics,
has positive KS entropy’”'. The efficacy of this defini-
tion has already been tested in the cases of a quantum
Henon-Heiles oscillator®’, the quantum standard map”
and Weigert's quantum cat map32. For the sake of brev-
ity unless otherwise specified, we present the time evo-
lution of all quantities calculated for the non-zero field
relative to the corresponding zero field counterpart, The
Kolmogorov-Sinai entropy is calculated using this rela-
tive distance. In all plots the temporal variation is ex-
pressed in terms - of the corresponding numerical
integration step number, V.

136

0.20 a

0.0C

-0.20

! r|T1|"|"'1"'"I'-'I'_'l"11=||I"'Ill:lllllllTerTTlrer""I""I""l_!—]
o 100 200 - 300 400 S00

N

|
et
o
o

i

L

N
~
N

|
o
S

|
o
'Y
o
T T N S S U N UA AN NN U YU Y SO S N

]
o
™
O

-1.00 + v T T T T T T T T T T T Y T T T T T T T TR T
0 100 200 300 400 $00
N

Figure 1a, b. Time evolution of S/k, where § is the Shannon entropy
and k is the Boltzmann constant, for Rydberg atom in external field:

(ayn=1(b)n=120.

Shannon entropy and density correlation function have
been shown in Figures 1a, b and 2 a, b respectively. In
both the figures a and b refer to the ground state and
n = 20 state of the hydrogen atom respectively. As 1s
clear in these figures, the applied field causes drastic
change in the dynamics of ¥, state of H-atom whereas
it hardly has any effect for the ground state. In Figures
1a and 2 a we see that entropy and density correlation
values for n = 1 state do not change when the external
field is applied ‘whereas those quantities for n = 20 state
exhibit (Figures 15 and 2b) significant changes on ap-
plication of the field of same strength as 1n the previous
case (n = 1).

Figures 3 a, b depict the time evolution of D and H re-
spectively for the shifted wavepacket case. For clarity
we also present the behaviour of D for the non-zero field
case (Figure 3 ¢). The distance remains the same (in fact
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Figure 2a, . Time evolution of density correlation function C for
Rydberg atom in external field: (a) n = 1, (b) n =20.

decreases at times) for n =1 but oscillates for n = 20,
becoming very large sometimes. Although we could
simulate only up to NAr =7 a.u,, it is clear from Figure
3 b that H remains practically constant at zero value for
n =1 while it increases rapidly to a positive value for
the n = 20 case, reflecting discernible chaotic dynamics
through sensitive dependence on initial conditions. Two
imitially (¢ = 0) nearby ‘Bohmian trajectories’ remain
close in course of time for the n = 1 case while they di-
verge for the n =20 case. In these figures, it is dis-
cernible that there is a time scale after which the
‘chaotic’ bebaviour sets in. However, it needs a thor-
-augh My whether th:s time is related to the break-time
 of Chirikov and Casati’’ . The authors are grateful to the
| eeferee for pointing this out, Corresponding D and H
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field.
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plots for shifted particle case are presented in Figures
4 a—c. As bcfore, Figure 4 ¢ i1s for the non-zero field
case. Like the shifted wavepacket case, here also D re-
mains more or less constant for n = 1 and increases to a
large value for n = 20. The Kolmogorov-Sinai entropy
initially oscillates around zcro and then gradually ap-
proaches zero for n=1. For n =20 case H increases
rapidly to a high positive value and then increases
slowly via feeble oscillation. The negative slope in the
former case vis-a-vis the positive slope in the latter, to-
wards the end of the simulation, provides unmistakable
signature of chaos in Rydberg atom in presence of ex-
ternal electric field. We have also studied (not shown
here) the time evolutions of S, C, D and H for n =5 and
n = 10 states and also by using F = 2. In general, for a
given n, a higher value of F causes greater variations in
the temporal profiles of these quantities. On the other
hand, for a given F, a state with larger n value suffers
more in comparison to little or no effect on a state with
smaller n value. Since 1t requires too much of computer
time we could not pinpoint the critical F value, for a
cgiven n, to exhibit the onset of chaos. In a nutshell F
and n are considered to be two parameters of the present
problem whose continuous variations and the associated
dynamics are not studied. We have also obtained more
or less similar results (not shown here) when a hydrogen
atom 1n various electronic states experiences the time-
dependent external Coulomb field due to a proton ap-
proaching for a head-on collision. It 1s important to note
that the present short time simulation is 1nadequate 1n
getting insights 1nto the long-time asymptotic behaviour
and hence one cannot infer with certainty about the final
state and 1onisation of the system as well as quantal
suppression of chaos’’, if any.

In summary, we have shown that the quantum poten-
tial theories are helpful i1n studying the chaotic dynamics
of a typical quantum system. Temporal evolution of
Shannon entropy and correlation function has easily dit-
ferentiated the regular and chaotic behaviour of hydro-
gen atom respectively in ground state and in a Rydberg
state in presence of an oscillating electric field. Sensi-
tive dependence on initial conditions 1s understood
through time variation of phase space distance and the
associated Kolmogorov—-Sinai entropy. Further studies
related to variations in n, F, @, the atom, the nature of
the external field, the time limit, etc. are 1n progress.
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Reduced uptake based zinc resistance
In Azospirillum brasilense sp7
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Zinc resistant Azospirillum brasilense sp7 exhibited a
low affinity for the metal. A zinc-sensitized, strepto-
mycin-resistant variant and a sensitive mutant of the
parent strain showed an Increased affinity for zinc.
Both the affinity for, and uptake of the metal were
in the order of parent strain <sensitised vari-
ant < sensitive mutant, suggesting reduced uptake as
the mechanism of resistance to zinc. Neither magne-
sium nor manganese could bestow any protection
against zinc toxicity in the sensitive mutant, suggest-
ing a specific pathway for the entry of the metal.

THE presence and buildup of metal pollutants 1n the soil
affects the soil microflora, which encompass the bene-
ficial microorganisms, like the biological nitrogen fixers
or BNFs. It has been reported that the total output of

- BNFs could be reduced in the presence of a metal ion'.

One such nitrogen fixer 1s the gram negative Azospiril-
lum brasilense sp7, which has gained importance owing
to 1ts non-obligate association with grasscs. This bacte-
rium expressed a high level (10 mM) tolerance to zinc
(Zn) which was constitutively cxpressedl. Continuing to
work with the same strain (referred to as the parent
strain hcereafter), the mechanism of Zn resistance has
been studicd in the bacterium and s preseated in this
paper.

The mnmal nuiaent mediom  (MM) and  culwure
conditions for A, brasilense sp7 were as mentioned ear-
lier™. A streptomycin-resistant variant, MS12, was de-
rived with a reduced maximum tolerable concentration”
(MTC)Y of Zn of 2 mM. This mutation scems to be of a
multifold importance i azospunth,

A. brasilense sp7 has been hnown to be recalcitrant to
mutagen treatments. For the members of the Azotobuae-
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