Finally one cannot avoid the temptation of speculating on the futuristic role of neutrino radiation since it is the most penetrating radiation known to man (except for gravitational radiation). The neutrino oscillation phenomenon is sensitively dependent on the density of matter traversed by the neutrinos, especially on its variation. Because of this, the possibility of using neutrino radiation from astrophysical sources for the tomography of the earth has already been speculated upon. Similarly, monitoring of the solar neutrino radiation during the solar eclipse can lead to the tomography of the moon. Of course this has to wait until neutrino technology is mastered.

REFERENCES

Acknowledgement. We thank Prof. N. D. Hari Dass for a helpful remark.

Received 21 December 1995; revised accepted 27 March 1996

A large conductance Ca$^{2+}$-activated K$^+$ channel in αT3-1 pituitary gonadotrophs

J. K. Tiwari, A. Adhikari and S. K. Sikdar
Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India

The Ca$^{2+}$-activated K$^+$ channel in endocrine cells is responsible for membrane hyperpolarization and rhythmic firing of action potentials. The probability of opening of this channel is sensitive to intracellular-free Ca$^{2+}$ concentration. In this study we have identified one such large conductance Ca$^{2+}$-activated K$^+$ channel in αT3-1 pituitary gonadotroph cell. This channel is ohmic with a unit conductance of 170 pS in symmetrical KCl (135 mM) and its current reverses near zero millivolts. When more than one channel is present in the patch membrane they open and close independent of each other, exhibiting no cooperativity between them as expected of a binomial distribution. The regulatory mechanism of this channel in modulating hormone secretion from αT3-1 gonadotroph cells is indicated.

Brain anterior pituitary gonadotrophs secrete luteinizing
hormone (LH) and follicle stimulating hormone (FSH) in response to the hypothalamic decapetide, gonado-
trophin releasing hormone (GnRH). The mechanism regul-
ating pituitary hormone secretion has been suggested to
involve changes in membrane potential and action
potential frequency. However, the electrophysiological
events underlying this stimulus-secretion coupling in
gonadotrophs are not well understood, primarily owing to
the difficulty in identifying gonadotrophs in the
heterogeneous population of pituitary cells. The immor-
talized αT3-1 gonadotroph cell line which has receptors
to GnRH and secretes α-FSH thus provides an interesting
and suitable system for understanding the electrophysi-
ological phenomena related to GnRH action.

Addition of GnRH to rat gonadotrophs causes rhythmic
hyperpolarizations terminated by the firing of action
potentials. Of the different types of ion channels
present in the membrane of an excitable cell, the Ca2+-
activated K+ channel provides an important link between
intracellular Ca2+ and membrane potential changes. The
intracellular Ca2+ concentration is known to rise in
αT3-1 pituitary gonadotrophs following activation by
GnRH. Our findings on the large conductance Ca2+-activated K+ channel in αT3-1 pituitary gonadotrophs, using the patch-
clamp technique show that when two channels are
present in the patch recording, they are functionally
independent of each other.

The αT3-1 cell line (kindly provided by Dr Pamela
Mellon, Univ. of California, San Diego, USA) was
cultured in Dulbecco’s Modified Eagle Medium (DMEM,
Sigma) supplemented with 10% v/v foetal bovine serum
(Gibco BRL) and antibiotics (1% v/v of Gibco BRL
antibiotic–antimycotic solution). They were maintained
in 25 cm2 culture flasks (Nunc) at 5% CO2 and 95%
air humidified atmosphere at 37°C and cells were split
on attaining 80% confluency. K+ concentrations in Na+-
free internal and external solutions for the electrophys-
iological recording were the same (155 mM). The pipette
solution contained (in mM) KCl 135, CaCl2·2H2O 2,
Hepes 5, and glucose 10, pH 7.35, while the bath
solution contained KCl 135, EGTA 1 and Hepes 5, pH 7.4.
For the experiments to check cation specificity, the
low KCl pipette solution contained (in mM) KCl 50,
K-glucanate 90, CaCl2·2H2O 2, Hepes 5, pH 7.35, and
the bath solution contained KCl 140, EGTA 1 and
Hepes 5, pH 7.4. Recordings were done at 25±2°C in
an air-conditioned room.

In the inside-out configuration, Ca2+ concentrations in
the intracellular face of the membrane, i.e. in the bath solution,
were varied during the experiments. To achieve a desired
level of free Ca2+, the concentration of Ca2+ and EGTA to
be added was obtained from the following equation:

$$
\text{Ca}^{2+}_{\text{total}} = \frac{[\text{Ca}^{2+}]}{1 + [\text{Ca}^{2+}] K},
$$

where $[\text{Ca}^{2+}]_k$ is the concentration of Ca2+ to be added,
$[\text{Ca}^{2+}]_k$ is the desired free calcium ion concentration in
the Ca2+ EGTA buffer in bath, [EGTA] is total applied
EGTA concentration in the bath solution and K is
equilibrium constant of Ca2+ EGTA buffer ($K = 10^{\text{13.0}}$).

pH 7.35 at 20°C.

Cells for recording were plated in 35 mm culture
dishes (Tarsons, India) at low density and single isolated
cells were used for recording after 24 h of plating. The
recording was done using fire polished omega dot cap-
illary micropipettes (INTRACEL Ltd, England), (pipette
resistance 9–12 MΩ and seal resistance > 2 GΩ). Single
channel currents were obtained using the patch clamp
technique in inside-out configuration using the EPC-7
patch clamp amplifier (List-Medical, Germany). The
recordings were stored in a DTR 1200 Digital tape-
recorder (Bio-logic, France, frequency response DC to
48 kHz). The data was played back through a 1 kHz
home-made Bessel filter and recorded into an IBM
compatible PC-AT-286 computer interfaced with
CED1401 AD converter (Cambridge Electronic Design,
Cambridge, UK, sampling frequency 10 kHz). Analysis
and fitting of the data were done using the PAT software
(kindly provided by J. Dempster, Univ. of Strathclyde,
Glasgow, Scotland).

Figure 1 shows single channel records at a fixed
membrane voltage (+40 mV) in the inside-out configura-
tion of the channel type being studied, but at three
different [Ca2+] concentrations on the intracellular side.
The indicated [Ca2+] concentrations were achieved by
adding pre-determined aliquots of 10 mM CaCl2·2H2O
stock solution directly to the bath medium (see equation
(1)). The frequency of channel openings increased with
increasing concentrations of [Ca2+]. This confirms that
these channels were sensitive to changes in [Ca2+],
concentration. Similar results had previously been
obtained in several other cell types. The amplitude of
the single channel current and the opening frequency of
the channel was sensitive to changes in membrane
potential, thus showing its potential dependence, but
[Ca2+], per se did not influence single channel conduc-
tance.

Most of the recordings showed the existence of more
than one active channel, indicating the possibility of
their clustering. Clustering of up to 5 channels has been
reported previously and in such cases the gating mecha-
nisms of individual channels have been found to be
influenced. We wished to establish that in recordings
with more than one Ca2+-activated K+ channel in the
patch membrane, the channels are functionally inde-
dependent of one another.

It is experimentally possible to resolve the elementary
currents from n number of channels in the patch mem-
brane. In a multichannel recording an histogram of such
events reveals a multimodal distribution with n + 1 peaks
(one for the closed state). The relative area under each peak can be interpreted as the probability of observing 1, 2, ..., n number of channels in the patch in open state. Figures 2a and b show the amplitude distribution histograms for a typical one and two channel recording respectively. The histogram in Figure 2a was fitted by a sum of two gaussian functions (see equation (2)), thereby indicating that the currents in the record originated from a single channel, which fluctuates between two conductance levels, i.e. open and closed. The sampled currents under the gaussian with mean value zero are identified as the currents under closed channel condition while the other gaussian represents currents from the open state. The mean value of the gaussian gives the estimate of the single channel current and the standard deviation of the gaussian represents the noise level of the recording. The fractional area under each gaussian gives the probability p, of the channel being in the corresponding state. In the case of two channels in the patch membrane, amplitude distribution histograms were fitted with a sum of three gaussian functions as given in equation (2).

\[
g = \sum_i \frac{A_i}{\sqrt{2\pi}\sigma_i^2} \exp \left(-\frac{(l - l_{mi})^2}{2\sigma_i^2} \right),
\]

where \(A_i\), \(l_{mi}\) and \(\sigma_i\) (\(i = 1-3\)) are fractional area, mean current and standard deviation respectively of the corresponding gaussian, \(w\) is the bin width and \(l\) is the experimental current. The values of \(A_i\), \(l_{mi}\) and \(\sigma_i\) are

0.1 \mu M Ca

0.6 \mu M Ca

0.8 \mu M Ca

Figure 1. Activation of a single K+ channel at different Ca\(^{2+}\) concentrations. The traces show stationary single inside-out K+ channel current records from an aT3-1 cell at a transmembrane potential of 40 mV, in three different [Ca\(^{2+}\)] concentrations. a, 100 nM Ca. b, 5 min following addition of CaCl\(_2\), 2H\(_2\)O to achieve 600 nM [Ca\(^{2+}\)] concentration. c, 4 min after addition of CaCl\(_2\), 2H\(_2\)O to achieve 800 nM [Ca\(^{2+}\)] concentration (bath volume = 2 ml).

Figure 2a, b. Amplitude histograms of inside-out Ca\(^{2+}\)-activated K+ channel current recordings from a patch containing one (a) and two channels (b). [Ca\(^{2+}\)] = 300 nM and membrane potential = +30 mV. a, Amplitude histogram, solid line is the fitted gaussian (see text, equation (2)). Mean value of single channel current is 5.26 pA. Inset shows sample of single channel current trace from which the amplitude histogram was constructed. Dotted line indicates the closed state and arrow is the open state. The \(x^2\) value is 21.7 which is highly significant even at 99.5% confidence level with 123 degrees of freedom. b, Amplitude histogram constructed from a recording containing two channels. The histogram was fitted by a sum of three gaussians (see text, equation (2)), with mean single channel currents (determined from the gaussian fit) of 5.47 pA and 11.4 pA. Inset shows sample of current trace from which the histogram was constructed. \(\Omega^1\) is the current amplitude when one channel is conducting and \(\Omega^2\) is the current amplitude when both the channels are conducting. The \(x^2\) value is 20.6 which is significant at 99.5% confidence level with 92 degrees of freedom.
RESEARCH COMMUNICATIONS

For a collection of channel events having 2 values, viz. open and close, to be independent, the probability distribution is binomial. Records containing more than one channel were used to establish if the channels open and close independent of each other by comparing the observed distribution of the current amplitudes to the estimated binomial distribution obtained from the following equation:

\[P_r = \frac{n!}{r!(n-r)!} \cdot p^r (1-p)^{n-r}. \] (3)

Figure 3 shows the experimental and estimated probabilities for a 2-channel recording at three different membrane potentials with fixed concentration of [Ca\(^{2+}\)] (100 mM). No significant deviation was observed in any plots. The probability of opening was higher at +60 mV as compared to +50 and +40 mV, which is expected of a channel showing voltage dependence (see legends to Figure 3). Similar results were obtained for a wide range of potentials and Ca\(^{2+}\) concentrations.

The current–voltage relationship for a typical Ca\(^{2+}\)-activated K\(^+\) channel is shown in Figure 4. Figure 4a shows single channel current traces at four different membrane potentials with equimolar KCl (135 mM) in pipette and bath. Figure 4b demonstrates the dependence of single channel current amplitude on membrane potentials. The current reverses at -3 mV with equimolar KCl in bath and pipette, which is close to potassium reversal potential. The cationic selectivity of the channel was tested by including 90 mM potassium gluconate +50 KCl in pipette and 140 KCl in bath. Experiments similar to the one shown in Figure 4a were conducted and the current reversed near 1 mV close to Nernst equilibrium potential for K\(^+\) (see legend to Figure 4), the estimated reversal potential for chloride ion being +26 mV. The Ca\(^{2+}\) sensitivity of the channel was confirmed by increasing the [Ca\(^{2+}\)] from 0.1 to 0.6 μM. The specificity of the channel for K\(^+\) was further judged from the change in the single channel current amplitude on changing the bath solution from 140 mM KCl to 70 mM KCl +70 mM NaCl, while the pipette contained 140 mM KCl. The inside-out patch was held at 30 mV.

Figure 3, Binomial distribution of the probability of r channel opening in a two-channel inside-out patch. The empty bars are experimentally observed values obtained from the gaussian fits of amplitude histograms, and the shaded bars are theoretically estimated values of the same (see text, equation (3)). Probabilities of channel opening estimated from these records are 0.12, 0.062 and 0.053 at membrane potential V = 60, 50 and 40 mV respectively. Ca\(^{2+}\) concentration in bath = 100 mM. The maximum error between experimental and theoretical values is less than 2%, at the potentials indicated.

![Figure 4a, b. Single channel conductance plot. a. Traces of single channel currents at various membrane potentials are indicated. Dotted line is the best current level and arrow denotes the open channel current level. b. Plot of single channel current amplitude vs membrane potential. The amplitude histogram was constructed for a 10 s recording, at each membrane potential. The current amplitudes were obtained by fitting the amplitude histogram with equation (2) (see text) and value of the parameter thus obtained is plotted. The solid circles are experimental points with symmetrical KCl (135 mM) in bath and pipette solution and solid triangles represent the experimental points with low KCl in pipette (K-glucuronate 90 mM + KCl 50 mM) and 140 mM KCl in bath. The lines are the best fitted first order linear regressions. The solid line is for symmetrical KCl in bath and pipette and dashed line is for low KCl in pipette. The conductance determined from slope of the solid line is 0.04 pS and correlation coefficient for the fit is 0.984. The dashed line is for the single channel currents in low KCl and the correlation coefficient for this is 0.993.](image)
The single channel current amplitude reduced in 70 mM KCl + 70 mM NaCl solution as expected of a K+ selective channel. Data in Figure 4b were fitted by a straight line, suggesting that the channel is of ohmic type with single channel conductance of about 170 pS in symmetrical KCl. In the gluconate containing solution the single channel conductance was about 190 pS as calculated from the best fitted line (see Figure 4), which could be attributed to increased concentration of K+ on either side of patch membrane.

The role of membrane hyperpolarization by Ca2+-activated K+ channels in hormone secretion has been described in a variety of endocrine cells. Studies on Ca2+-activated K+ channels have shown that they are of different types. Based on studies using the patch-clamp technique, these channels have been broadly classified into large conductance channels (BK channels; conductance >100 pS) and small conductance channels (SK channels). The conductance value obtained from I-V relationship shown in Figure 4b suggests that the properties of the channel reported in this study may be a type of BK or maxi K(Ca) channel similar to those reported earlier. We have also observed SK channels in our recording but the occurrence of these channels was less frequent in comparison to BK channels (data not shown).

Earlier studies have shown that Ca2+-activated K+ channels in a variety of cells are modulated by changes in free Ca2+ concentration at the intracellular membrane surface. In this paper we show that Ca2+-activated K+ channels present in the αT3-1 gonadotroph cells are similarly modulated. Further, Ca2+ concentration affects the probability of opening of these channels but not their single channel conductance. Our observations are similar to those reported earlier in other systems. Glasby and Martin have shown that when channels are clustered they mutually affect each other gating mechanism, but the results presented here suggest that when more than one channel is present in the patch, they operate independently of each other. With the dimension of pipette tip used in our experiments we have not encountered more than two channels in the patch membrane.

The observations presented in this study show how the Ca2+-activated potassium channels could be involved in hormonal release. At rest the intracellular-free Ca2+ concentration in αT3-1 cells is between 50 and 100 nM (ref. 5). As shown in Figure 1, the probability of the channel being open would be low under these conditions.

Following GnRH stimulation the Ca2+ concentration rises to about 600 nM (refs 5, 6), which would increase the open probability of the Ca2+-activated K+ channels which would lead to hyperpolarization of the membrane. Since these channels are also potential-dependent (Figure 3) these channels would also close, offsetting continuous hyperpolarization response by this self-feedback mechanism.

ACKNOWLEDGEMENTS. The studies were funded by grants from the Department of Biotechnology, Govt of India and partly by Erna and Victor Hasselblad Foundation (Sweden). We thank Dr Pamela Mellon (Univ. of California, San Diego, USA) for kindly providing us αT3-1 cells and Dr Anjali Karande (IISC, Bangalore, India) for help and suggestion in maintaining these cells. JKT is supported by a Senior Research Fellowship from CSIR, India.

Received 14 November 1995; revised accepted 9 April 1996