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Starting from Chandrasekhar’s work on ellipsoids

and energy principles we follow a trail of questions
which leads to (i) all possible flows that are attribut-
able to vortex lines; (ii) the theorem that all steady
inviscid flows are states of stationary energy at fixed
circulation, and (iii) a discussion of energy principles
for barotropic and non-barotropic inviscid flows.

Introduction
Yerkes 1962

Chandrasekhar’s work is pervaded by a strong sense of
mathematical style. A paper should not merely be rele-
vant and right, it should be elegant and exact. To attain
this elegance Chandra concentrated on problems abstracted
from the real world, but neverthel¢ss simple enough to
allow analytical solution. These he used to illustrate the
application of more general methods such as energy
principles and higher virial theorems. 1 dedicate this
paper to Chandra in memory of the months that I spent
at Yerkes working with him in the spring of 1962.

At that time Chandrasekhar and Lebovitz"* were de-
veloping the Virial Tensor theorem into a powerful
method for treating the problems of equilibrium and
stability of homogencous ellipsoidal configurations and
P. H. Roberts® was generalizing their methods to inho-
mogeneous bodies. I had just completed a work on the
collapse of the Galaxy with Eggen and Sandage (ELS)°
and was interested to see whether the simplified model
in which the collapsing Galaxy was taken to be a homo-
geneous rotating and dynamically collapsing spheroid’
would be stable or unstable to changes of shape.
Chandra’s method had to be generalized to dynamically
collapsing bodies. In what follows I first analyse why it
is that Chandrasekhar’s Tensor Virial theorem® works so
well for these problems. I shall then consider underlying
principles that arose from these studies and show how
they are connected with the fundamental energy princi-
ples of inviscid fluid mechanics, On the way we shall be
led 10 study the vortex lines and to find the gencral mo-
tion that can be attributed to them. We also find con-
pections to Moffat’s work on helicity. My aim In writing
this paper is not to explore the great field of work that
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Chandrasekhar®™"> covered himself, but rather to illus-
trate how my brief period working with him led to the
cxploration of various interesting aspects of the fluid
mechanics of gravitating systems and their relationships
to observed phenomena.

The basic theorem on dynamical ellipsoids

Theorem. If an homogeneous ellipsoidal body of invis-
cid fluid initially has velocities that are linear functions
of position, then 1t will remain ellipsoidal and the inter-
nal velocities will temain linear functions of position for
all time provided that the density remains spatially uni-
form. The density may be prescribed function of time in
which case the pressure distribution within the expand-
ing or confracting ‘liquid’ is deduced from the equations
of continuity and motion, or the pressure may be zero, in
which case the uniformity of the density follows from
the initial homogeneity and the theorem.

To prove the theorem 1t is easiest to start with the
special case of zero pressure which 1s especially simple.
We need Gauss’s result (see Chzmdrasekharl) that the
potential within an homogeneous ellipsoid is a quadratic
function of position. It follows that the gravitational
field vector g is a linear function of position. If the ve-
locities are linear functions of position at any time ¢ they
will remain linear functions at ¢ + Of since the only ac-
celerations are due to gravity and they are linear. The
ellipsoidal shape at time f + d¢ follows because the ellip-
sotd is subjected to a linear transformation by velocities
that are linear functions of posttion, so it remains 4
quadratic closed figure which can only be another ellip-
soid. So the theorem 1s proved.

When the uniform density is prescribed, the same re-
sult will hold provided we can show that the pressure Is
a quadratic function of position at each time, because
then the accelerations will again be linear as in the
purely gravitational case. Now, if the veloctties are lin-
ear functions of position at time ¢, then the pressure dis-
tribution at that time obeys V°p=C, where C is
independent of position, This follows from the diver-
gence of the equation of motion. However, p must also
obey the boundary condition p=0 on the bounding
ellipsoid x"-A-x=1. From this it follows that
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p=-C/l2A () -x"-A -x), where A is the trace of A.
Hence the pressure 1s quadratic in x at time . 1t follows
that the velocities are hinear and the body is ellipsoidal
at time t+ d¢, from which it follows in turn that the
pressure remains quadratic then too. The theorem is true
also when instead of p(r), the central pressure p. is a
prescribed function of time. The theorem would also
hold if p., were prescribed as a function of p and 1.

We are now in a position 10 see why the tensor virial
theorem 1s sO successful In describing the second har-
monic perturbations of these homogeneous ellipsoids.

Firstly, the prescribed knowledge of the density p(r)

contains the 1nformation of the equation of continuity
once we ensure that the total mass is conserved. Sec-
ondly, there are nine independent components in the
Virial Tensor theorem when we include the three anti-
symmetric ones that give angular momentum conservation.
This is exactly the number of independent unknowns in the
linear transformation of the initial position of a fluid ele-
ment that turns it into its current position. Thus once we
write-1In mass conservation and the linearity we have
demonstrated above, then the Vinal Tensor theorem
extracts all the rest of the information that remained in
the equations of motion. In this sense, for time-
dependent homogeneous ellipsoids, the Tensor Virial
theorem is equivalent to the equations of motion. But
what of the second order deformations? Here it is only
necessary to note that there are many different possible
initial velocities that are linear functions of position and
that we can choose motions close together. One of these
can be considered as a perturbation of the other by a
displacement that 1s a linear function of position — these
are precisely the displacements due to second harmonic
deformations. Thus, while it appeared miraculous to me
at the time that the second order perturbed Virial equa-
tions formed a closed set of moment equations, a more
intuitive investigator might have seen that it must be so
without doing all the algebra required to prove it.

Shape instability of collapsing spheroids and
ellipsoids

Briefly returning to the problem of the Galaxy's col-
lapse that brought me into this field, the methods of
Chandrasekhar and Lebovitz worked beautifully for
collapsing bodies but I would have made an error had I
not been corrected by Chris Hunter who pointed out that
I should not look for changes in the amplitudes of the
disturbances of a collapsing body but rather for changes
of shape. After much algebra this led me to consider the
complex dimensionless virial quantity

4
Z = (Maiz)"’ exp —--ijQ.dt J(&l +i§2)(x1 +fx2)pd3x‘
0
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Here £ is the displacement vector of the disturbance and
(2(1) is the rotation rate of the collapsing body whose
equatorial radius is ay. Conservation of angular momen-
tum ensures that Qaf is constant. When no external
tides act on the system and ¢ = [, Qdt is the total angle
turned through, the equation governing Z takes the very
stmple form (Lynden-Belllﬁ, equation (68))

d°Z/d¢p* + BoZ = 0,

where By = 4nGpB Q7 +2a71Q %4, ~ 1, and By, is as
defined in Chandrasekhar'. Now for a freely falling
collapse the equation for the major axis a; reads

dy - Q%a, = 2nGpA a,
SO

2a7' Q% = 2 - 4nGp QA
and then

Bo=1+4aGpQY (B, — A)),

where B;; and A, are the dimensionless coefficients de-
fined by Chandrasekhar'. Evaluating By for collapsing
spheroids I found it to be negative in all cases, so that
grows ‘exponentially’. Now, if we rotate our axes for
ward through an angle A, [(&; + &) (x, + ixy)pd’x get
an extra factor €%, thus the phase of the complex .
corresponds to a disturbance that travels at half the an
gular velocity of the fluid. So while one equatorial axi
elongates and the other contracts, those axes rotate an
the fluid rotates forward through them. Thus when th
system collapses to form a disc, it will make a Rieman
ellipsoid in the form of a rotating bar with the fluid rc
tating forwards within the bar. It may be no coincidenc
that such motions are those of the predominant family ¢
stellar orbits in the bars of barred spirals. The rotatin
case has therefore some extra interest as compared t
the non-rotating one in which the orientation of the u
stability is unchanged.

Nevertheless it is the non-rotating case that has so {;
seen major applications to astronomy. It is particular
easy to explain the instability in the non-rotating ca:

Figure 1. Cross-section in the ac plane of a generalized ellips
(heavy line) with inscribed and circumscribed spheres. See text.
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studied by Lin, Mestel and Shu'’. The pictorial treat-
ment follows Lynden-Bell13 where 1t 1s also shown that
the instability is suppressed 1if pressure reduces the inward
acceleration to less than two {ifths of its free fall value.

Consider the gravitational field at C, the top of the
minor axis. This is the sum of the contribution +7Gpc
from the inscribed sphere and from the remainder la-
belled ‘+’ 1n Figure 1. Hence the inward acceleration,
~& /c, of the minor axis per unit length is >3 7Gp.
Stmilarly, considering the circumscribing sphere we find
that the acceleration —d/a of the major axis per unit
length is <% Gp since the acceleration due to the filled
sphere is reduced because the regions E are empty.
Hence —¢' /¢ > —d/a at all times. This implies that the
final collapse time of the c-axis starting from rest 1s less
than the collapse time of the g-axis; the system will be-

come flat — the axial ratio is unstable.
~ Lin, Mestel and Shu'’ explored the nonlinear devel-
opment of these instabilities and deduced that 1t was the
shortest axis that collapsed fastest leading to pancake
instabilities as the generic case. Zel’dovich was excited
by my quasar paper'’ on disc accretion by black holes,
so he explored my other papers and applied these large-
scale instabilities very fruitfully to cosmology™. It was
the realization that the shortest and fastest collapsing
axis might not be the angular momentum axis, that led
me to consider the possible precession of galaxies
whose ‘planes’ were not normal to their angular mo-
menta®!. Such considerations were stimulated by Kerr’s
discovery of the Galaxy’s warp*>.

Although Chandrasekhar and Lebovitz have given a

full delineation of major families of rotating ellipsoids .

and their stability, we shall see presently that their rela-
tionships to hydrodynamical energy principles are not
fully understood” . In spite of pioneering work by
Fujimoto®® the full exploration of the dynamically col-
lapsing rotating ellipsoids is still incomplete and their
behaviour is unexplained. An important paper by
Rosensteel and Huy”’ puts the basic equations in Hamil-
tonian form and I feel this should be a good starting
point for further development.

Two ellipsoidal conundrums

I shall finish this section with two conundrums encoun-
tered while working in this field that led me to a better
understanding of the different roles of angular momen-
tum conservation and conservation of circulation around
closed curves (Kelvin’s theorem).

Imagine an inviscid Maclaurin spheroid whose density
is slowly increasing as it contracts at fixed angular mo-
mentum J. Its moment of inertia is 2/5Maf so J =
2/5Mat Q. Its equatorial circulation is C= JQxr df =
Q- rxdf=27afQ. Thus both conservation of angu-
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lar momentum and conservation of equatorial circulation
(flux of vorticity through the equatorial plane) lead to
conservation of af€ as the system slowly shrinks. Now
following my note”®, apply the same arguments to a
slowly shrinking Jacobi ellipsoid with a; # a;. Then
J=1M(@?+a2)Q - while C=Q-[rxdl=272Qaa;.
Dividing these two relationships we find that a;/a; 1s
constant, i.e. the equatorial eccentricity of the Jacobi ellip-
soid must be fixed as the system shrinks. But this cannot

be true! The increasing density increases the dimension-
less parameter (.1'2/GM3)[(,0/M)]”3 which governs the
position along the Jacobi sequence. And a,/a; certainly
increases along that sequence starting from unity at the
Maclaurin bifurcation. It is certainly possible to imagine
an inviscid shrinking fluid currently in the shape of a
Jacobi ellipsoid and the correct uniform rotation, so
what 1s the way out of this apparent contradiction?

There 1s another very similar conundrum. Imagine a
liquid ellipsoid or prolate spheroid to bé momentarily
static with its long axis at 45° to a distant body that acts
upon it with a tidal field. Then imagine that the tidal
field 1s turned off and the ellipsoid is left to evolve. Cir-
culation 1s conserved 1n time-dependent gravity fields so
it remains zero around every closed curve within the
liquid so the vorticity @ remains everywhere zero. How-
ever, the action of the tidal field on the elongated body
at 45° certainly gives it angular momentum. We have
therefore generated a body with angular momentum but
with no vorticity anywhere. How can this be?

The escape from both these conundrums comes by
breaking the concept that the bodies must rotate rigidly.
Inviscid fluids readily slip into more complicated fiows.
The shrinking Jacobi ellipsoid 1s only momentarily a
Jacobi ellipsoid. As its density increases its figure starts
rotating at a different pattern speed €2, than the fluid’s
rotation. Put differently, the body remains ellipsoidal
but with an internal circulation within the ellipsoid
which itself rotates. The first conundrum led straightway
to the understanding of why an inviscid shrinking Ma-
claurin spheroid cannot enter the Jacobi sequence as it
crosses the bifurcation®®. The only inviscid uniformly
rotating sequences that can be traversed by a shrinking
body must have a,/a; constant. Only the Maclaurin se-
quence has that property. To enter the lower energy Ja-
cobi sequence the body must break Kelvin's theorem.
Whereas this can be done by viscosity or by internal
weak magnetic fields, the rate of entry will be deter-
mined by the strength of such effects and for molecular
viscosity the times involved are often prohibitively long.
To an inviscid {luid the Jacobt sequence i1s not a possi-
ble evolutionary sequence, This conclusion of course
raises the question of how possible inviscid evolutionary
scquences should be defined. We find that Chandrasek-
har’s sequences of Riemann ellipsoids defined for good
mathematical reasons to have w/€), fixed along each
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sequence are not possible evolutionary sequences 1n the
sense described above. More suitable sequences through
the Riemann plane of solutions are those traversed by a
gradually shrinking mass. These are defined by J/(MC)
being constant along each sequence, For some recent
explorations of such sequences see Christodoulou et
al.**°. However, there are other physically defined
problems for which still other sequences are important;
e.g. a body with constant density is gradually given
more angular momentum by a gravitational tide. For that
problem J/MC varies and each such sequence is defined
by a constant value of CIGM(pIM)'".

Energy principles

Background

Barely a hundred meters from where I write, towering
over those who enter Botanic park in Belfast 1s a fine
statue of William Thomson, Lord Kelvin, a famous son
of the city who made his career in Glasgow. It was he
who first developed energy. principles for the flows of
inviscid fluid and showed how multiply connected irro-
tational flows should be analysed using them. His basic
developments are well described in Lamb’s great book
Hydrodynamics®'. Kelvin sought a new view on atomic
physics through his knotted vortices which he hoped
would be the basic atoms of the real world. 1 first
learned about energy principles and their power In
finding both equilibrium and stability from Jeans’s book
Cosmogony and Stellar Dynamics®* where the method
was developed using K. Schwarzschild’s energy princi-
ple for uniformly rotating bodies at fixed angular mo-
mentum. However, my interest was reawakened by a
fine lecture by Martin Kruskal on magnetohydrodynamic
stability at Les Houches in 1959. (It was at that school
also that I first met Bob and Vera Rubin.) I at once ap-
plied the method to differentially rotating axially sym-
metrical equilibria where M(h), the total mass with
specific angular momentum less than A, 1s some given
function of h. The mass with specific angular momentum
between h and 2 + dh is then M'(h)dh. If the fluid 1s
polytropic with p = «kp’ the internal energy is fpedax
where € =xp"'/(y = 1). It is useful to remember that
differentially rotating polytropes rotate on cylinders.
This is because

(u-Viu= --u;ﬁ/R =—p 'Vp + Vy = V(y ~ ye),
(2.1)

Ny,

here R=(x,y, 0) and R is the corresponding unit
vector that points away from the rotation axis. Evidently
V(y —ye) points in the R direction, so ¥ —y¢ is a
function of R. This with equation (2.1) implies that uy
is a function of R at equilibrium. Now h = Ru, and
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we may specify the inverse function A(M) rather
than M(h). Now give a trial density distribution p(R, z)
corresponding to the correct total mass M. We define
M(R) = I8 1= p(R, 2)dz27RAR and calculate its inverse
function R(M). Then R the velocity is A(M)/R(M) so the
kinetic energy 1S

M (M) P
EL [R(M)_ M.

—

Adding this to the internal and gravitational energies we
find the energy principle that

1 (M, B2 K G-” pp’
_— —dM YA, , 3 3.7
(2.2)

should be stationary at any axially symmetrical equilib-
rium. The proof that variation of p with the total mass
fixed leads to the equations of axially symmetrical
equilibria is best done by realizing that any such p can
be obtained 'by axially symmetrical displacement &
which is so made that every fluid ring preserves its an-
gular momentum. This energy principle was proved in
my thesis but as far as I know it has never been used
apart from an early unsuccessful attempt with Ostriker.
Of course if W is a minimum, then the system must be
stable to all axially symmetrical modes because there are
no neighbouring lower energy axially-symmetric states
towards which it might fall. However, the principle says
nothing about stability to non-symmetrical displace-
ments and these are some of the most 1nteresting — given
that Jacobi ellipsoids, Riemann ellipsoids, normal spi-
rals, barred spirals, etc. are all known. Thus we need a
more powerful principle capable of determining stability
to such modes and if possible one that is capable of
finding non-axially symmetrical equilibria. In my the-
sis> 1 pointed out that the function M(h) must come
from some cosmogonical considerations. This may have
aroused my examiner’s interest since Crampin and
Hoyle™ set about finding it for a number of galaxies and
Mestel, my advisor, made it part of his fine discussion
of the Galactic Law of rotation. In fact, if one takes the
same simple law M(h) =< h as occurs for the uniformly
rotating cylinder, then crudely ignoring flattening and
balancing gravity against rotation, GM(WR? = h’R™,
one obtains s o« R, i.e. V = constant. It 1s not hard to
show that this still holds exactly for the infinite disc that
is perfectly flat.

In 1964—65 a young post-doc J. P. Ostriker, who had
been a graduate student of Chandra’s at the time I vis-
ited Yerkes, came and worked with me at Cambnidge.
Earlier a paper by Chandrasekhar’' and another by
Clement’® had demonstrated energy principles for gase-
ous bodies either at rest or in uniform rotation which
gave the frequencies and the stability of all modes not
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just the axially symmetrical ones. They were not true
nonlinear energy principles but rather quadratic expres-
sions for the variation of the energy for systems close to
a given known equilibrium. Thus they could not be used
to search for equilibria but could be used to find the
frequencies of modes.

They were not at all tied to the special forms of dis-
placement for which the Virial method worked so well
(in homogeneous bodies). Ostriker and I set out to gen-
eralize these results for general flows so that we could
apply them to differentially rotating bodies such as gal-
axies. After making false starts we found it all came out
beautifully’’ provided one used time derivatives that
followed the motion. We showed that the perturbed
equations of motion for the displacement vector § could

be written in axes rotating with angular velocity € as

poD2 EIDE + 2poQ X DEIDt + p2 X (Q X £)

where Do/Dt = d/dt + ug + V, uy is the unperturbed ve-
locity and V and P were Hermitian operators related to
the gravitational energy and the internal energy changes.
Expanding the Dy . Dt terms gave

pod*ElIt —iB - 9Elot + C - E =0, (2.4)

where B and C are Hermitian with C real and B pure
imaginary. C=T + V + P where

T - &E=po(ug - V)(ug- V)& +2pQ2 X (ug - V)§
+p()Q X (Q X 5)

which is the kinetic energy change and
—iBAEIdt = 2po(ug - V)OE/Dt + 2poQ % 9E/0t.

Now [dE/ot - iB - 0El3td’x = 0. This follows because
the integrand may be written —V-[pguo(c')glat)z] which
may be converted to a surface integral and

poup - dS =0, since there is no unperturbed flow

through the surface. Multiplying (2.4) by 9£/d¢ and inte-
grating in space and time, we find what appears to be

the energy equation of the perturbation. This 1s not in

fact true!
1 , | .
§p0(6§/at) +§§-C-§ d’x = const.

Clearly, if C were positive definite, a small initial §
would have to remain small, so a sufficient condition for
stability is that C should be positive definite. While this
is true it is also dull since C 1s hardly ever positive
definite owing to the existence of trivial displacements
that allow & to grow while leaving the density and ve-
locity fields unchanged. While we recognized the exis-
tence of some trivial displacements, the importance of
others that allow C to attain negative values was first
noticed by Schutz and Sorkin’ and exploited by Fried-
man et al.*** and Bardeen et al*'. Although C is not
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the energy, the variational principle for the frequencies,
derived in our paper is correct, so it can be used to study
normal modes and demonstrate their stability. A second
problem with the criterion that C be positive definite is
that it looks for stability in a reference frame that ro-
tates with fixed angular velocity rather than treating the
problem at fixed angular momentum, i.e. it is analogous
to Poincaré’s minimizing of (V + +IQ?%) rather than K.
Schwarzschild’s (V — J*/(21). While these give the same
equtlibnia they do not give the same criteria for secular
stability and Schwarzschild’s i1s the correct one for a
freely rotating body. The point is that a small increase in
I can lead to a slower net rotation of the perturbed body
which for a Jacobi ellipsoid would lead to £ growing as
the figure rotated further and further from the orienta-
tion of the unperturbed one. Whereas Hunter’s> discus-
sion removes that trouble with C, it does not deal with
the other ‘trivial’ displacement problem to which we
now turn.

The trouble with the trivials arises because we may
convert a flow into itself by associating each fluid ele-
ment with a displaced one. If we do this across the lines
of the mean flow, then the associated & will grow with-
out limit although no instability is involved because we
have merely mapped the flow into itself. Friedman and
Schutz show that the removal of such trivial parts of & is
equivalent to the requirement that

Aiu'-df?:O' -

around every closed curve — i.e. that the displacement
should preserve the circulation so that the new circula-
tion around the displaced curve is the same as the old
circulation around the undisplaced one. For the non-
barotropic case the same requirement holds for the re-
stricted class of curves on surfaces of constant entropy.

When do two flows have ‘the same’
circulations?

Any functional of the density and velocity fields that ts
constant as a result of the equations of motion 1s a first
class invariant. Good examples are the total energy and
the total angular momentum. Although Kelvin’s circula-
tion theorem gives us invariants, they need the specifi-
cation of a path that moves with the fluid. Thus the
circulations arc invariants but are only second class in-
variants because without further knowledge we cannot
tell which path to take at a later time 1n order that it
should correspond to a given path at the carlier time.
How can we find out whether a flow has the ‘same’ cir-
culations in it as some other flow specificd earlter? By
the same circulations we do not mean that we calculate
the circulations along the same paths, rather we mean
that there exists @ conlinuous masy preserving mapping
of the flows into each other such that the circulation
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around each closed path in one flow is equal to the cir-
culation around the corresponding closed path in the
other. The closed paths in the first flow can be chosen at
will. It follows from Keivin's theorem that any
barotropic flow taken at one time 15 isocirculational to
whatever {low it develops into at later times. As a corol-
lary it follows that if a flow taken at time ¢; 18 1socircu-
latonal to another flow taken at time t,, then they are
isocirculational at whatever times we consider them. But
how do we specify a given state of circulation in an in-
vartant manner? To do this we need to find first class
invariants that carry the same information as Kelvin’s
‘second class’ circulations. There are hints that this is
possible. Helicity, Ju - wd'x, is a first class invariant
which as we shall see can be expressed in terms of
Iinked circulations. When all the circulations are zero,
the i1socirculational condition may be expressed in the
special but first class form Curl u = 0. We shall be par-
ticularly interested in steady states or at least states that
are steady when viewed from rotating axes. Writing
u=v+Lxrthen @ =20 + Curl v where €2 is the an-
gular velocity of the axes and

w X v=Vy (3.1)

where
y = J.p"ldp-!-%vz +‘£"‘Q)< R|2-1/J.

The surfaces ¥ = const. are known as Bernoullian sur-
faces and both w and v must lie on them. If we consider
the situation in which the vorticity field is nowhere zero;
then by the hairy sphere theorem these surfaces cannot
have spherical topology because w must lie 1n the sur-
face and i1s non-zero. The condition that @ be nowhere
zero can be considerably relaxed because we are not
interested in just one surface but in a nested set of sur-
faces. The condition @ = 0 gives us three equations so In
three dimensions the general case is that w 1s zero only
at isolated points — the solutions for x, y, z of the three
equations @, =0, w, =0 and w,=0. A typical member
of a nested set of Bernoullian surfaces all with supposed
spherical topology will have no point where @ = 0 so the
hairy sphere theorem shows us that the nested Bernoul-
lian surfaces cannot have spherical topology under even
this relaxed constraint on w. The simplest nested sur-
faces on which the hair can be brushed are topologically
either cylinders or tori. The former occur naturally for
any differentially rotating axially symmetrical configu-
ration whereas the latter are found in bodies with me-
ridional currents such as Hill's spherical vortex. When
azimuthal circulation is superposed on the latter, the
Bernoulliian surfaces remain toroidal with the vortex
lines twisting around them. However, let us begin with
the simple case in which the vortex lines pass through
the fluid from a *bottom’ B, to a ‘top’ 7. We follow
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Lynden-Bell and Katz® in considering a narrow vortex
tube surrounding our chosen vortex line. The mass in
this vortex tube is AM = |1 pAS - d? where AS is the
tube’s cross section and d/ is the infinitesimal increment
along our vortex line. The strength of the vortex tube is
the circulation around 1t, AC = w(¥f) - AS(¥) which is
independent of £ since the narrow tube i1s a vortex tube.
Without loss of generality we may choose AS to be a
normal cross section perpendicular to df, which by

definition lies along @ since the latter defines the vortex
line. Then

T
AsaM/acsz/(m-E)de, (3.2)
8

where we have substituted for AS - ¢ in the expression
for AM. £ is the unit vector along d?.

In equation (3.2) AS has disappeared so as we shrink
our narrow vortex tube to a hne, we obtain a property of
our chosen vortex line itself. Now by a well-known
theorem, vortex lines and tubes may be chosen to move
with the fluid, so for a general barotropic flow AC is
conserved as is AM the mass in the tube. Thus 4, the
load is a conserved property of each vortex line. Notice
that this 1s true of any barotropic flow steady or time
dependent, in which the vortex line concerned intersects
the surface. When the flow is a steady flow we may
consider the vortex lines as either fixed or moving with
the fluid. In the latter interpretation they must flow into
other fixed lines of the same A, since A4 is conserved fol-
lowing the motion. Thus in any steady flow the surfaces
of constant A contain both @ and u and are therefore the
Bernoullian surfaces (Figure 2). Furthermore, we may
now use the time-dependent surfaces of constant 4 as
generalizations of the Bernoullian surfaces to time-
dependent flows. There is a second invariant associated
with any given fluid element, E, on a vortex line, the

I ——— e ettt T il

Figure 2. Nested cylinders of constant load in a uniformly rotating
sphere; A is the vortex line of maximum load.
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partial load that measures how much of the load lies

‘below’ the chosen fluid element. This quantity 1s called

the ‘metage’ (pronounced meat age, the ‘measure’ of the
partial load). The metage, u, 1s also conserved since the
mass in the narrow tube and below the small AS through
the chosen element is also conserved. Specifically

E .
,u—_-L pl(w-£)de. (3.3)
Notice that
w-Vu=p. (3.4)

Thus by construction both DA/Dt and Du/Dt are zero so
in steady states the flow 1s along the intersections of the
surfaces of constant A and constant u# surfaces. Notice
that the surfaces of constant A and constant # can be
constructed from the density and velocity fields speci-
fied at any time, thus A and u are first class comoving
coordinates. L.et M(A) be the mass enclosed by the
‘cylinder’ of load A and let C(A) be the circulation
around the large vortex tube made by that ‘cylinder’;
then by splitting the region between 4 and A + d4 into
infinitesimal vortex tubes it is simple to show that

dM  dM/dA .
dc ~— dc/dar — ™

(3.5)

Figure 3. Cross section of ‘cylindrical’ surfaces of constant load
with three distinct pieces to sume surfaces of constant load.

flux of vortex lines C,(M)

flux of vortex linea Cy (M)

A e llluﬂ-_q._._.__-_ -
-

A-"'"-"-' “‘\H‘q

il

.

s
\/f‘\

“\\‘ ) //

e ‘_.l.l‘
"l..__“-- . |l""_-

e
L .
[ F¥ P

snass Al contamed in torod

Figure 4. Vortex lines wound on a totus of constant load showing
the two suriaces across which the vortex fluxes ¢ and €y are meas-
urcd.
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When the surfaces of constant load have the topology of
nested cylinders, then if two flows have the same M(A)

or M(C) they are isocirculational. The proof consists of
showing that there 1s a mass preserving mapping such
that the circulations around all paths are preserved (see
ref. 43, p. 187). More complicated nesting of cylinders
(Figure 3) were also considered there. When the vortex
lines lie on toroids some of which do not intersect the
surface ot the fluid, these considerations need further
generalizations also given there, When the vortex lines
are purely toroidal as 1n Hill’s spherical vortex, they
close on themselves. In such a case we may define a

second Joad as the closed lodp integral A, =§pl(m-})d£

along a vortex line and we can again define the mass
within the toroid of load A, and the circulation, &,
around the toroid by the short way. However, the gen-
eral case i1s not like that because the vortex lines nor-
mally from quasi-ergodic area-filling curves on the
toroid that do not close on themselves (except for spe-
cial toroids). Around such a toroid containing mass M
there will be two circulations (Figure 4) (M) the circu-
lation along a path that goes around the toroid once the
long way without going around the short way, and C;(M)
the circulation along a path that goes once around by the
short way without going around the long way. Then the
first and second loads are given by

dc, Y ) dc, Y! .
am | =hand @) T

The minus sign occurs because M is not the mass within
‘cylinders’ defined earlier. With this sign the two defi-
nitions agree if the toroids intersect the surface and be-
come ‘cylinders’. The helicity invariant*** for such a
case 1s

dl
H = ju-wd3x=jC —24M .

T (3.6)

Again one may prove that, if the surtaces of constant
load have the same topology for any two flows and if the
functions (M) calculated for each tlow are the same
and likewise the two C,(M) are equal, then there exists
an 1socirculational mass-preserving mapping of one into
the other, so the two flows are isoctrculational. Thus
conscervation of C;(M) and Gy (M) ywelds first class in-
variants which contain the information of the state of
circulation of the fluid in an invariant manner. We have
therefore succeeded in replacing Kelvin's second class
invariants by first class ones.

On the general flows attributable to vortex lines

For any steady flow we may either constder the vortex
lines as fixed in space or as moving with the luid, Both
those ‘{flows’ are mass preserving and both preserve the
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flux of vorticity through any surface. What is the most

" gencral flow that we could attribute to vortex lines if we
ask that the ‘flow’ of vortex lines be mass and flux pre-
serving? Let v be the fluid velocity and v + w be the
velocity we attribute to the vortex lines. Then

dp/at + div(pv) =0 (4.1)
and

ap/at + div[(p(v + w))] =0 (4.2)
and hence

diviow) =0 (4.3)
Similarly,

dw/dt + Curl (w X v} =0 (4.4)
and

ow/dt + Curllo X (v+w)]=0 (4.5)
hence

Curl{wo X w)=10 (4.6)

Now the arguments defining load and metage in §3 only
. require that the motion be both mass preserving and
vortical flux preserving; thus they apply just as power-
fully to v + w as they do to v! So

oA oA

5?+v-VA=0=Et-+(v+w)-Vl (4.7)
SO

w-Vi=0 (4.8)
and similarly for metage

w-Vu = 0. (4.9)
Hence

pw=AViL X Vu. (4.10)
Also since @ VA = 0 we have by equation (3.4)

mxw=-£-(w-Vy)V).=AVl (4.11)

so by equation (4.6) A must be a function of 4 only.
Thus the most general mass preserving and flux preserv-
ing flow that can be attributed to vortex lines is the flow
of the fluid v(x, t) supplemented by the addition of a
flow w along the intersections of the surfaces of con-
stant load and constant metage of the form

A(A)

W= (4.12)

VixVu.

This covers the case in which the vortex lines intersect
the fluid’s surface so that u is defined.

When the vortex lines are wound on toroids with cir-
culations around both the short and the long way, it is
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necessary to define Vu somewhat differently. The tor-
oids themselves can be found directly from the flow as
the surfaces on which the vortex lines are densely
wound. If we label each toroid by the mass inside it M
and let the circulation around it by the long way be
C,(M) and by the short way C,(M), then dCy/dM = -1}
and dC,/dM = 17'. By imagining the toroid to be cut and
twisted so that the vortex lines become untwisted, one
sees that one twist generates a flux of vorticity around
the short way equal to the flux around the tube between
M and M + dM by the long way. This implies that the
pitch of the vortex lines on the toroid is ~d(,/dC;
= A,/A;. This pitch is the average ratio of the rotation
turned by a vortex line around the z-axis per rotation
around the toroid by the short way. It 1s the generaliza-
tion to toroids of the idea of the pitch of a screw when
the screw is directed around the ‘circle’ made by the line

toroid about which the others are nested.

We still need a definition of metage when the vortex
lines are wound on toroids. Consider first an equilibrium
situation so v itself obeys equations (4.1) and (4.4)
without the 9/d¢ terms. Since load is conserved v lies in
the surfaces of constant A, as does @w. Hence w=v
+ A(A)w/p satisfy both equations (4.3) and (4.6) for
any A. In general the lines of w will spinal around the
toroids just as those of v and w do but by choosing
A= Ay(L,) appropriately on each toroid, we can in gen-
eral make sure that a line of wg closes after just one turn
around the toroid by the long way with no turns around
by the short way¥*. Since in a steady flow we can con-
sider a voriex line as either fixed or moving with veloc-
ity wg all points on the line will give the same value of
the load. Since div(pwy) =0 and p # O the lines of wy

cannot cross and, since they lie on the surfaces of con-
stant A, the closure of one implies the closure of all the

others on that toroid. Since w preserves both the vortical
flux and mass, it preserves load-so [5 p/w-#df =12,
where P and P’ are consecutive intersections of a vortex

line with a line of wo. Now define = [% p/w ¥d¢

along a vortex line starting from the same line of wy that
we chose originally but now proceeding to an arbitrary
point (O before the second crossing at P’. By our original
argument the mass on an infinitesimal vortex tube be-
tween O and P will be preserved by the motion wy as
will the strength of the tube so # will be preserved by

the motion. So u defined in this way will be preserved,
Dopu.Dr = 0. Although ¢ has an arbitrary loop of wy as
Its starting point, 1t is eliminated in Vi X VA, so that 1s
uniquely defined. # is multivalued but in steps of 4,.
Since wy lies in the surfaces of constant A; and constant
U we may write

L W . - el

*There are exceptions, ¢.g. flows with @ « u but we shall not give
the detailed prescriptions for such special cases here. When 4= 0 it
is necessary to switch the roles of 4| and 2,.
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A —-——— Prm— il e el

PWo= BVA'I X Vﬂ

then @ X wqy = BVA; and since the curl of this has to be
zero B has to be a function of A, only. Thus

Wp = P*IB(A.])Vll X Vﬂ

Now let us look for the most general flow of vortex
lines in our steady flow. Clearly wy 1s one possibility
and p~ @ is another since divw =0 and o X 0 =0. A
general vector field lying on the toroids may be written

W = AzW{) + Blp_iﬂ).

Any flow of vortex lines must preserve A; and so must
lie on the toroids so this general form applies

W X w= AzB(/ll)V;{l

and since the curl of this must be zero, we deduce that
A, must be a function of 4, it follows that

div(pw) = div(B,w) = 0

and so w-VB;=0. Now for a general toroid w lies
densely so this equation implies that B, takes the same
value densely all over the toroid. If By is to be continu-
ous this implies B; is a function of A4;. So the general
flow of vortex lines is given by w=A3(ll)p"lVll
X Vu + Bi(A1)p '@, but that is only for steady flow.
[One may wonder here what all the detail 1s about since
any A dependent combination of v and p~'w would have
done for the steady case and that is equivalent to what
we have finally deduced.] The advantage of introducing
1 becomes obvious when we consider the non-steady
problem. Pick any point P on a toroid on which @ is
densely wound. Starting at P integrate p/w- £ d/ along

the vortex line through P until the integral reaches 4,

. the first load of that toroid. Choose the end point P’ as
the new starting point and repeat the process so generat-
ing a sequence of points P, P, P”, etc. In the steady case
these points lie on a curve of constant 4 which we may
choose to call 4 = 0. Now instead of choosing one point
P start from a curve that cuts every toroid 1n such a point.
The process may be repeated to generate the surface u = 0.
Any surface of constant u can then be generated starting
from a point on # = 0 and integrating less far. These con-
structions work in the steady case and are not invali-
dated by the time dependence. Finally we deduce that
the most general flow we may attributc to vortex lines
that are densely wound on toroids are v + w where

pw = A3(A)VA, X Vu + B(A))ow.

This is the natural generalization of the result (4,12)
obtained for lines that hit the surface of the {luid. Of
course on those lines that do hit the surlace B(4)) has to
be zero.

In principle there are many more complicated cases.
The toroids could themselves be knotted etc. butl pro-
vided they remain toroids the same construction works.
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A fundamental theorem in fluid mechanics

Of all barotropic flows with a given state of circulation
and a given total angular momentum those with mini-
mum’ encrgy are stable steady states in some (in general
rotating) axes. Those with stationary energy are also
steady states but are often unstable. All steady states
may be obtained as states of stationary energy 1n this
manner even if they are only steady when viewed from
rotating axes. We follow the proof of the appendix to
LBK which generalizes Arnold’s work®® to three-
dimensional compressible fluid.

Here we are concerned with flows that are close to
flows of stationary energy. Let &(r, ) be the small field
of displacements that maps points of one flow into those
of another so that r’ = r + &(r, t). The condition that the
flow p, u is isocirculational to the flow p’, u’ is that for
all closed paths, I, within the fluid,

F

r

0=A$u-ds=Ju’(r+§,t)d(r+§)—r_£u(r)-dr.

Therefore

0= ;[u'(r+5)=——u(r)+u’(r+§)-6§/ar]-dr
=J.[Au+(u+Au)-6§/ar]-dr.

Hence the condition for isocirculationarity is exactly
Au + (u + Au) - 9&/9dr = Voy*. (5.1)

Hence the second order in & (notice that oy* is first or-
der)

Au = Voy* — u-0&/0r — (VOy* — u-0E/9r)-9E/dr + O(EY).
Now
E X curlu = (Vu)-£ - (£-V)u
= V(u§) - (V§)u-(£-V)u

Hence

Au=Voy +E X o + (£ V)u + 0(&?), (5.2)
where

Oy = 0y*—u €.

Notice that for cach chosen £ and Jy there exists an
isocirculational flow du; so at each time & and oy may
be varied independently. The difference in the Kinetic
encrgies of the two flows s

"If the only displacemenis that Jo not lower the energy are uniform
displacements and untform rotations accompanied by displacements
that do not change the density and velocity ficlds, then the energy
will be considered as at a minimum,
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- iy,
L T

AT = Aj%uzd!n=-’-%(u+$u)2 —%uzdm
=ju~.ﬁu+%(éu)2dm.

The change in gravitational potential energy is

“.&‘;3 = HJA“# exl dm

] I
5 G_U(,r_{_é._rf_g;l Ir-—r'l]dmdm :

To first order the double integrand is

1 ’ ¢ I N
(§’V>(,’r_r1)7(§ -V )(ir—-r'l} 0(&*),

and sO writing
Y =G fie—1'Tdm’, Y = + Poxq

and reversing r and r’ where necessary we have
AV, = - [ E-Vypdm + 0(E?).

Turning now to the internal energy, the work done in
squeezing down unit mass from infinite dilation is

—Ipdv=—J.pd(‘:;'J=‘P/P+I%Z-

Thus the internal energy is

d
U =—J-pd3r+JlJ‘*’—f-dm;

hence

6
AU = —J‘épd3r+_l.-§'dm+_[|:(§ - v)J%] dm+0(£?).
(5.6)

The first two terms above cancel and so collecting first-
order terms only, and writing V=V_+ U

(5.4)

(5.5)

av=-] E-V[w-f-df-]dw—J 6p[w-f %Jd'f‘r 57

where we have used Jdp =—div (p&) and integrated by
parts at the last equality. We wish to minimize the total
energy subject to fixed total angular momentum

O=AJ=f[(r+.§)x(u+éu)—r><u)dm

= [Ir x Au + £ X (u + Au)]dm. (5.8)

We now wuse Lagrange’s method and minimize
£~ Q-J where the components of Q are undetermined
multipliers that allow us to vary dy and & as though they

- were unrestricted, and E=T + V. From equations (5.5)
to (5.8),

AE = Q-AJ
q
=_H(u ~2xr)- Au+§'[qu—V[w —-I%?-) } dm+0(£?).
758

(5.3)

— Sl el

If we define v=u~  x r and use expression (5.2) for
A

AE=K - AJ =fpv-Vc5yd3r

+J{ _§.(vxaj)+v-(§'V)(v+QXl‘)

+E -[(.Qx ) -v[w-f%’-)}}dw 0(£2)

which may be cast in the form

AE=X) - AJ = f('ﬁypv - dS - féydivgov)d3r

d
+J‘§-*—vxw+V' S v? -f-_’-"ﬁ—w—%(ﬂxr)z }dm+0(§2).

At a point of stationary energy for fixed angular momen-
tum we require the right-hand side to be zero for all
variations of £ and dy; hence

pv.dS = 0 on the fluid boundary,
div(pv) = 0 1n the fluid interior

and

i dp
—VXW =— L%v2+J——¢—%(er)2 .
P
These we recognize as the equations of steady motion of

a barotropic fluid referred to axes that rotate at a rate €.

Energy principles

To obtain a nonlinear energy principle such as that
given by K. Schwarzschild for the special case of uni-
form rotation one must discover a neat way of ensuring
that all the flows considered have a given circulation
state C(M). A way of doing this was given in LBK but
Katz et al.*’, Yahalom er al.*® find another method and I
suspect the very best way of doing this is still to be dis-
covered. All of this work can be generalized to non-
barotropic fluids. There it is only the circulations on the
surfaces of constant specific entropy s that are con-
served and Ertel’s® invariant e =p~'w - Vs comes into

1its own. The state of circulation of the fluid is specified
by the function M (e, 5) that gives the total mass with
both specific entropy >s and Ertel’s invariant >e. As far
as I know no-one has given a general method of deter-
mining the velocity of the flow in terms of M(e, s) but
Katz and Lynden-Bell*® have written down the Lagran-
gian for such flows and shown that the equations of in-
viscid fluids follow. Finding variables in terms of which
all the flows considered automatically have the given
M(e, s) gives a great advantage as degrees of freedom
that cannot be excited are automatically eliminated.
Finding the best of such variables remains an important
challenge for the future (see Ipser and Lindblom®").
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In concentrating on the physics of vorticity I have not
done full justice to the beautiful idea of Joseph Katz. He
looks at the Lagrangian of the fluid — sees that it is in-
variant under a large class of displacements that leave
the density and velocity unchanged. The momenta con-
jugate to such displacements are thus conserved quanti-
ties. He uses the theory of continuous (Lie) groups to
show that this leads to Ertel’s invariant and eventually
to load and metage for the case of barotropes. There are
close analogues here to the gauge fields such as elec-
tromagnetism but that would take us too far from the
theme of this paper. An account of the technique applied

to fluids can be found in KLB>?.
Although the equations of fluid mechanics in the pres-

ence of viscosity are not Lagrangian, nevertheless the

visctous forces are linear in the gradients of u and lead to
quadratic dissipation. It should therefore be possible to
find a Rayleigh dissipative function to put the equations
in quasi Lagrangian form. Mobbs>® has looked into
variational principles for dissipative flows. The methods
of Glansdorf and Prigogine’® should also apply but they
are not always simple to use.

Retrospect

Chandrasekhar’s emphasis on style and beauty led him
to an elegant mathematical approach to fluid mechanics
while his great enthusiasm inspired even those of us who
sought a more physical approach. The path he set us on
led to some of the most fundamental aspects of fluid
mechanics, many of which have not yet found their final
and most elegant form of expression. Chandra’s chal-
lenge lives on!
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