open marine environment, and was not conducive for nautiloid living.

The individual groups within the Bagh taxa appear to be of high density but are less diverse. Ammonites previously believed to be taxonomically diverse, are now found to be almost monotypic represented mainly by *Placenticeras*\(^\text{19}\). The functional morphological study of this genus as well as sedimentary facies analysis indicate that they lived in very shallow waters\(^\text{24,25}\) and their monopolization of the Bagh basin as an opportunistic species implies prevalence of physico-chemical stresses.

The only nautiloid specimen found, is a steinkern. Associated ammonites also show varying states of preservation. The horizon, where the specimen is recorded, is a condensed zone marked by hardground at several levels\(^\text{28}\). Associated ammonites are often seen to be bored and internal moulds are even encrusted with epizoan oysters implying reworking. The eutrephoceratid specimen is a septate internal mould whose carapace are infilled with a matrix similar to the host sediment. Since the infilled material retains the shape of nautiloid, we suggest that sediments were cemented prior to diagenetic dissolution of aragonitic shell. But matrix was partly lithified when the shell dissolved as evident from a slight deformity of the specimen. The absence of body chamber in the present specimen, we believe, is due to mechanical destruction prior to burial\(^\text{27}\). This also explains why infilling material is sediment and not calcitic spar which commonly occupy carapae of Bagh ammonites. Water with dissolved carbonates enters the cephalopod phragmocoene through sipuncle. *Eutrephoceras*, characterized by sipuncle, is a deep-water form and preferred to live in the continental shelf\(^\text{21}\).

In conclusion, we attempt to establish that rarity of nautiloids in the Bagh basin may be ascribed to the deep inland nature of the sea which differed physicochemically from the open oceanic environment. The only eutrephoceratid recorded, was perhaps posthumously transported from the open marine environment in a manner similar to the fate of a dead shell of extinct *Nautilus*. The shell was later mechanically damaged, lost its body chamber and was finally buried within the Bagh sediment.

ACKNOWLEDGEMENTS. We thank Dr S. Bardhan and Dr P. K. Bose of Jadavpur University; and Dr T. Lahiri of G.S.I for their valuable guidance in preparation of this article. T. K. G. thanks DST, New Delhi and K. H. thanks CSIR, New Delhi for financial support.

Received 21 September 1995; revised accepted 8 February 1996

Structural provinces of India based on gravity trends

H. V. Ram Babu

National Geophysical Research Institute, Hyderabad 500 007, India

Gravity trend is defined as the axis of an elongated high or a low. Trends drawn from the Bouguer gravity anomaly map of India reveal that the Indian shield is a mosaic of about twelve crustal blocks that are either sutured or separated along the rift valleys. These blocks corroborate well with those identified earlier from geological evidences and provide a geophysical support to geological inferences.
Gravity trend is defined as the axis of an elongated gravity high or low. These trends represent deep structural features such as the axis of a major fold or an elongated intrusion in the metamorphic or the crystalline part of the crust. In sedimentary regions, the trends in the sediments are usually parallel to the trends in the underlying crust. Rifts could be identified from gravity trends as elongated linear belts. The study of gravity trend patterns helps to identify geologic terranes1,2—crustal blocks with different geological and tectonic history from the adjoining blocks.

Gravity trends drawn from the Bouguer gravity anomaly map of India7 are shown in Figure 1. The most prominent feature of Figure 1 is the belt of linear trend pattern in ENE direction that extends from west to east across the subcontinent along the Narmada and Son rivers. Oblique to this major trend pattern are the linear belts along Godavari, Mahanadi and Damodar river valleys which appear to have been branched out from the Narmada–Son trend pattern. These belts of linear trends might suggest the pattern of ancient rifting of the Indian shield and subdivide the Indian crust into various geological/tectonic provinces. Twelve crustal blocks listed in Table 1 have been delineated from the gravity trends by using the following criteria:

- a crustal block contains internally consistent set of sub-parallel trends;
- boundaries of crustal blocks separate discordant trend patterns;
- the amplitudes and pattern of anomaly may change from one block to the other.

Following the above criteria, twelve crustal blocks have been identified from Figure 1. These crustal blocks have characteristic geologic features that distinguish one from the other and they can be called as 'terranes' and individual geologic and structural characteristics of these terranes have been described4,5.

The relative age of gravity trend areas can be inferred from where the trends on one side of the common boundary are parallel to it and on the other side are oblique to it. The oblique trends are likely to antedate

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Gravity trend map of India and the twelve crustal blocks delineated from the trends. NSR, Narmada–Son rift zone; DR, Damodar rift; MR, Mahanadi rift; AR, Aravalli rift(?); GR, Godavari rift.}
\end{figure}
Table 1. Structural blocks identified from gravity trends and their trend directions

<table>
<thead>
<tr>
<th>Block number</th>
<th>Name of the block</th>
<th>Major trend direction</th>
<th>Major rock type/structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Southern granulite terrain</td>
<td>N-S</td>
<td>Granulites</td>
</tr>
<tr>
<td>2</td>
<td>Palghat-Cauvery shear zone</td>
<td>ENE</td>
<td>Shear zone</td>
</tr>
<tr>
<td>3</td>
<td>Coastal Tamil Nadu (Cauvery) terrane</td>
<td>ENE</td>
<td>Sediment cover</td>
</tr>
<tr>
<td>4</td>
<td>Dharwar craton and a part of the Deccan volcanics</td>
<td>NNW, NW-SE</td>
<td>Schist belts, Closepet granite, granite-gneiss</td>
</tr>
<tr>
<td>5</td>
<td>Eastern Ghats</td>
<td>NNE, NE-SW</td>
<td>Khondalites, alkaline magmatism</td>
</tr>
<tr>
<td>6</td>
<td>Bhandara craton</td>
<td>N-S, NNW</td>
<td>Granite-gneiss</td>
</tr>
<tr>
<td>7</td>
<td>Singhbum craton</td>
<td>N-S, ENE</td>
<td>Ultramafic suites with granite intrusives</td>
</tr>
<tr>
<td>8</td>
<td>West Rajasthan block</td>
<td>NNW</td>
<td>Sediments and trap cover</td>
</tr>
<tr>
<td>9</td>
<td>Bundelkhand craton</td>
<td>ENE</td>
<td>Reworked gneisses and granitic rocks</td>
</tr>
<tr>
<td>10</td>
<td>North Aravalli craton</td>
<td>N-S</td>
<td>Rhyolitic rocks, granites, migmatites</td>
</tr>
<tr>
<td>11</td>
<td>Shillong plateau</td>
<td>E-W</td>
<td>Granites, gneisses, and metamorphics</td>
</tr>
<tr>
<td>12</td>
<td>Himalayan fold belt</td>
<td>NW to NE</td>
<td></td>
</tr>
</tbody>
</table>

3. NGRI, Bouger gravity anomaly map of India (1:5000000), 1975.

ACKNOWLEDGEMENT. I thank the Director, NGRI, for permission to publish this work.

Received 21 October 1995; revised accepted 20 February 1996

Effect of abrupt salinity changes on survival of Artemia parthenogenetica

V. Ramasubramanian and N. Munuswamy

Department of Zoology, University of Madras, Guindy Campus, Madras 600 025, India

A sudden decrease in salinity from 130 to 20 ppt resulted in the death of 96% adults, 78% subadults and 30% nauplii of Artemia parthenogenetica. Thus the tolerance level of the nauplius to changing salinity was greater than other stages.

Due to precipitation and flooding, Artemia populations flourishing in the salt pans are subjected to wide and abrupt changes in salinity\(^1\). Von Hentig\(^5\) made a detailed study on survival of A. salina nauplii exposed to different salinity-temperature combinations. An equally detailed study was also undertaken on the hatching efficiency of cryptobiotic cysts\(^6\) as a function of salinity. We report here survival of selected life stages of A. parthenogenetica, which were exposed to abrupt changes in salinity.

Populations containing nauplii, subadult, and adult stages of A. parthenogenetica were collected from salt pans at Kelambakkam, Madras, South India. They were quickly transported to the laboratory, where each of the selected stages (50 each) were separated and abruptly exposed to different salinities (20-130 ppt) in beakers (1000 ml). They were fed on rice bran twice a day and the water in the beakers was changed once a day. Five replicates were maintained for each stage at the tested salinities. The 130 ppt salinity was considered as the control and the duration of the experiment was restricted to five days.

The adults were most susceptible to sudden salinity changes, when they were transferred from 130 to any lower salinity down to 20 ppt (Figure 1); the mortality was also high, as much as 96%. The subadults were also severely affected, suffering a mortality of 78% compared to nauplii (30%). Hence the nauplius was the most tolerant stage to sudden salinity changes.

A sudden decrease of 10 ppt (130-120 ppt) in salinity resulted in less than 10% mortality in adults and...