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On the work of P-L. Lions

M. Vanninathan

During the International Congress of Mathematicians held at Zurich in August 1994, Lions was
awarded Fields Medal for his significant contributions in the basic understanding of ordinary and
partial differential equations, calculus of variations and other related areas. He has introduced
several new ideas including the notions of renormalized solutions, viscosity solutions and the
principle of concentration—compactness. The object of this article is to introduce certain physical
models and show how fundamental issues associated with them can be settled by means of the

above concepts.

THE International Congress of Mathematicians (ICM)
takes place once in four years. The last one was held at
Zurich, Switzerland, 1n August 1994, As usual, there
were four recipients of Fields Medal, which is the
equivalent of Nobel Prize in Mathematics. They are J.
Bourgain, P-L. Lions, J-C. Yaccoz and E. Zelmanov.
Apart from these, A. Wigderson received the Navan-
lIinna Prize. These awards are usually given in recogni-
tion of the existing works as well as the promise of
future achievements. These medalists were mostly hon-
oured for a body of work rather than a single result ex-
cept perhaps Zelmanov whose contribution was the
solution of the Restricted Burnside Problem in Algebra.
The other three awardees of Fields Medal are analysts.
Yaccoz, one of the leading theorists in dynamical sys-
tems, 1s working in Université de Paris — Sud, Orsay,
France. Bourgain (IHES, France) received the medal for
his outstanding contributions to several areas of analysis
including the geometry of Banach spaces, Harmonic
analysis, Ergodic theory and nonlinear evolution equa-
tions.

In the above list of awardees, P-L. Lions stands out
because he 1s probably the first medalist who has deep
interest in a wide variety of applications, In a sense, this
award to Lions may be an indication of the manner in
which applications in many areas are now beginning to
stimulate basic research in mathematics.

Before describing some aspects of his work, let us
look into his professional life. Born in 1956 at Grasse,
France, Pierre-Louis Lions was a product of Ecole Nor-
male Supérieure and he obtained his PhD from Uni-
versité Pierre et Marie Curie, Paris 1n 1979, Ever since
1981, he 1s a professor attached to the Université Paris —
Dauphine. To his credit, he has numerous awards and
distinctions including membership of Academie des Sci-
ences, Paris. He has been a regular speaker in the past
few ICMs and other important conferences all over the
world.

M. Vanninathan 1s 1n the TIFR Centre, fISc Campus, Bangalore
560 012, India.
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Lions is an applied mathematician working in various
aspects of differential equations (ordinary, partial, inte-
gro-differential, linear, nonlinear, etc.). He has made
significant contributions in the basic understanding of
ODE, PDE, calculus of variations and other related
arcas. Motivated from applications, he has tackled sev-
eral mathematical questions, regarding various physical
models which 1nclude Boltzmann equation, Vlasov-
Poisson system, Hamilton~Jacobi equation, Hartree-
Fock equation, etc. His existence and uniqueness results
give a new insight into these equations which is essential
In any numerical computations with them. Recently in
ref. 12, he has obtained global weak solutions to com-
pressible Navier—Stokes equations governing the flows
of compressible viscous fluids, a very satisfying result
after Leray’s classical theorems on incompressible flows

~proved in 1930s. No doubt, the difficulties present in

such models are due to the nonlinearities. A crucial con-
cept which plays essential role in this work is that of
renormalized solutions which is discussed below in Part
A in the context of Boltzmann equation.

It will be a futile effort to try to survey all of Lions’
works in one article and so a selection of the material
has to be made. Apart from giving the references to the
original articles, the purpose of this write-up is to give a
glimpse of the work of Lions to mature scientists who
are not necessarily professionals in Applied Mathemat-
ics. Having said this, it would be impossible for me to
make everything accessible to non-mathematicians. Af-
ter a certain point, mathematical tcchnicalities enter the
picture. Nevertheless, efforts are made to offer heuristic
explanation whenever possible, stress the dithiculties,
highlight the ideas of Lions to overcome themn and to set
aside the technicalities as much as possible.

Part A: Kinetic equations and transport theory

Kinetic equations are fundamental mathematical models
of Statistical Physics describing the dynamics of mole-
cules in a rarcficld gas. They provide a picture which is

125



GENERAL ARTICLES

intermediate to Classical Mechanics and Continuum
Mechanics. The state of the system 1s given by a non-
ncgative function f=f(t, x, v) which represents the
density of molecules at time ¢t € R”, at the point x € R’
and with velocity v € R”. Basic models which govern
the evolution of f are of the following form:

%-&-v-VJ-&-F-V,f:Q(ﬁf).

Such models are dictated by the following reasonable
picture: Since the gas is rarefield, there will be some
time between successive collisions of molecules. During
this time, the molecule will travel a positive distance
called mean free path and its motion 1s governed by

Newton’s Law:

Here F = F(t, x, v) is the force acting on the molecule.
The right hand side Q is called collision term which
takes into account collision effects on f.

There are a lot of assumptions (implicit/explicit) in
the construction of these models: molecular chaos, bi-
nary collisions, closeness to equilibrium, etc. Thus it is
not clear even from the physical point of view that there
is a global solution to them when the Initial Condition

(IC) is far from equilibrium. Earlier there were some

results covering some special cases: IC being very
small, solutions for small time, homogeneous case (i.e. f
independent of x), etc. No general result was available
in the literature. That is why the gencral existence re-
sults of DiPerna and Lions' validating the above hy-
potheses came as a surprise. It 1s our aim here to see the
new elements introduced by them in the general under-
standing of kinetic equations that led them to their suc-

.CCSS.

Boltzmann equation. Here F = 0. The collision term Q 1s
fairly complicated and it was constructed by Boltzmann
using his famous molecular chaos hypothesis.

QL )t x, 0) = Qe (L)X, x, v) - O_(f, f)(¢, x, v},
Q. = R}dv. J:ﬁ d(nB(v-u..,m)f’f: ,

Q_ — Rjdﬂt g2 d(ﬂB(U — U, m)ﬁ#,

fo= Rt %, 0, f = f(1,x, 0,
fi=f(t, x,v.),

v/ = v - (v~ v., OO,

Ve = Us + (¥ — 1., O)O.

Here B = B(z, ®) 2 0 is called the collision kernel and it
is a function of Izl and (z, ®) only. Exact assumptions on
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B are not important for us here; 1t suffices to say that the
approach of DiPerna and Lions allows kernels in a large
class. Let us note the convolution structure in Q. w.r.t

the variable v:

Q- (Lf)=f-Axf
A(z) = J‘S2 B(z, w)dw.

With all these notations, we are now in a position 1o
write down the so-called Cauchy problem.

Given f, = f,(x,0) 20, find f 2 0 satisfying
@f 19)+v-V_ f=0(f, ) in R} xR} xR> (B)
f(O, x! v)zf{}(x: D').

1. A geﬁeral scheme for solving Cauchy problems
and difficulties with Boltzmann eguation

The following general method has been found successful
in the resolution of Cauchy problems for many models
and DiPerna and Lions follow it to solve (B).

First step. (consistent approximation) Define a sequence
of approximate solutions which can be easily con-
structed. In the case of (B), many such schemes are
available. One such consistent approximation is as fol-
lows: approximate B by B e Cp(R3xS2) and Q byQ,
where |

o 1)=(1+8]r @) ar.0). 8>0,

where Q is the collision term corresponding to B. Ow- .
ing to the fact that 0 has linear growth w.r.t f (in con-
trast to O which has quadratic growth), it 1s classical to
establish the existence and the uniqueness of approxi-
mate solutions. The method is based on differentiating
the approximate equation and thereby extracting bounds
on the derivatives of its solution. (That is why B was
smoothened out.) The task is by no means easy and is
highly technical. Moreover, the crucial work of DiPerna
and Lions does not lie here. Indeed this scheme of con-
structing approximating solution has been considered by
earlier authors in the field. What was lacking is a proof
that these approximate solutions converge to a suitable
solution to (B). The contribution of DiPerna and Lions
fills up this gap and provides the first global existence
result for (B) via a constructive procedure.

To analyse this convergence, a sequence of exact so-
lutions { 7} of (B) is considered in the sequel. It is to
be reiterated that this is done only for simplicity and the
treatment of approximating sequence will be parallel.

Second step. (stability) Extract maximum possible a
priori estimates on { f"} independent of n. This depends
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a lot on the structure of the equation under considera-
tion.

Third step. (convergence) By general results of Func-
tional Analysis, it then follows that there exists a subse-
quence of { f'} which converges weakly to f (weak
convergence simply signifies the convergence of the
averages, e.g.. sin nx converges weakly to 0). It 1s a
general belief that a consistent scheme which 1s stable is
actually convergent. For reasons explained below, the
truth of the above belief is not obvious in the case of
nonlinear equations. That is why it 1s not easy to verify
that f solves the problem (B).

2. A priori estimates

The basic idea is to find physical invariants of the form
Jlwfdxdv when f evolves according to (B) and
v =V (f, x, v) 1s a suitable function. Usual conservation
laws of mass, momentum, energy, etc. are obtained in
this way. It is important to realize that such invariants
provide estimates on f in terms of IC. Indeed, exploiting
the structure of Q, DiPerna and Lions derive the follow-
ing estimate for all times f:

[+ P+ 10 fdxde < 2J] (1 + 6P
+ (1 + ) W) £, dxdo.

On the other hand, the techmique of Boltzmann’s
H-theorem yields the inequality

”fllogfldxdwf ”e(f)d.xdv ds<c

+JI(Ilog ol + 21x* + 2P ) f, dxdy,

where e( f) 1s the entropy flux density given by

fj’(f) IIB(U—U:,(D)(f ft ﬁm)log(fﬁ‘f*

]dv* dw

and ¢ 1S a numerical constant.

3. Extracting a convergent subsequence

In view of the above estimates, it is reasonable to im-
pose the following restriction on IC:

fFfo (1 + e+ 1v]* + llog £, hdxdv £ C. (1)

(Physically, this is a reasonable assumption. It says that
the density, energy, entropy are finite initially. Earlier
works assumed other smoothness properties on f, which
are not physically meaningful.) Then the sequence of
exact solutions { "} will satisfy

sup ”(1 + {xI* + 1o +1llog f "D f"dxdv < Cy, (2)
Oc<t<?T

CURRENT SCIENCE, VOL. 70, NO. 2, 25 JANUARY 1996

J:Hd £7)dxdvds < C. (3)

In general, a bounded sequence {g"} in L' (RY, (which

means that [zalg”ldy < C) can exhibit the following be-
haviours.

Case (i). The mass can escape to infinity. By this, it is
meant a situation where |

8" (y)=8(y—yn) with y, — oo,
and the support of g is bounded.

Case (i1). The mass can concentrate on null-sets. A
trivial example i1s provided by Friedrichs’ mollifiers:
g"(y)=n p(ny) with p 2 0 smooth, Ip = 1. It is known
that g" approaches Dirac measure 8, concentrated at the
origin.

Case (i) 1s prevented here by the presence of weights
x> and Ivf* in equation (2). Case (i1) is ruled out because
of the estimate on f"llog f*l implied by equation (2).
Thus we conclude that (Dunford—Pettis criterion) there
exists a subsequence (still denoted by n) such that

f*—=fin L'((0, T) x R2 xR}) weak. (4)

(Recall that thls simply means that the averages of f"
converge to those of f.)

4. Difficulties

We have carried out Second step and Third step of the
general scheme in §2 and §3 above. It is expected that
the limit f obtained in equation (4) 1s a solution to (B).
However, there are serious difficulties in proving this.
We list them now.

(d1) Using equation (4), it is easy to pass to the limit n
the left side of the Boltzmann equation in (B) because it
is linear w.r.t f. On the other hand, it 1s not clear how to
pass to the limit in the collision term because it is non-
linear. This is because a weakly convergent sequence (as
in equation (4)) can sustain oscillations on finer and
finer scales (e.g: sin nx — 0 weakly). In such a case,
nonlinear functionals J can behave badly 1a the sense

‘that J( f") need not converge to J(f) weakly (e.g:

sin® nx — 1/2 weakly). What we are saying is that non-

linearities and averages do not commute which is a well-
known fact. This difficulty is present in any nonlinear
problem and in particular 1n (B). -

(d2) If elliptic operators are involved then these oscilla-
tions are usually killed, i.e. we can obtain estimates on
the derivatives of f". This phenomenon can be illumi-
nated by considering Burgers equation which contains
the heat operator:

du” i u®  o*u"
m+ u ——— .
ot ax  ox*

127



Multiplication by 4" yields bounds for (du”/dx), (du"/dt)
and u«". It is then common to use Rellich’'s Lemma (or
more precisely, Lions’ Lemma) which implies strong
convergence of a subsequence of u" (i.e. absence of
oscillations in «"). Using this, it is easily concluded that

_ou” du

3 U433 weakly

i

provided that
u” — u weakly.

The conclusion is that the difficulty mentioned in (d1)
disappears 1n the Burgers equation. Unfortunately in the
present case, we have the following transport operator
which constitutes the linear part of Boltzmann equation:

d
T="3‘;+v'V1.

This 1s hyperbolic and 1t does not kill oscillations. On
the contrary it ‘propagates’ oscillations along real char-
acteristics which it possesses. A simple example is pro-
vided by the equation u, + cu, = 0-with IC u(x; 0) = g(x).
Solution is explicitly given by u(x, t) = g(x - ct) which
shows clearly how initial values are propagated. In this
example, solution is no smoother than IC, i.e. there is
absolutely no smoothing effect at all. Let us close this
discussion by mentioning that it is an open problem to
derive estimates on derivatives of solutions of (B).

(d3) Now we see another difficulty which is by far the
most sertous one. As noted previously, O contains es-
sentially the convolution product w.r.t » and point-wise
product w.r.t x, . By Young’s Inequality, convolution
product of two integrable functions make sense as an
integrable function whereas their point-wise product
does not make sense because the averages of the product
may not exist. Thus, for f satisfying bounds (2), it is not
clear how to define the quantity Q( f, f) in any reason-
able way. '

We know how to make distributions out of non-
integrable functions in some simple situations. But the
situation at hand is quite complicated. Of course, this
difficulty can be overcome via Holder Inequality if one
can deduce L bounds (p > 1) on f. However, the deriva-
tion of such bounds for (B) is an open problem.

5. Main result

Because of the above difficulties, no genuine progress
could be made for several decades. This is why, 1t came
as a pleasant surprise when DiPerna and Lions'? came
up with a proof of the following result by introducing
the notion of renormalized solutions:

Theorem 1. Let f, satisfy equation (1). Then the weak

limit f obtained in equation (4) satisfies (B) in the
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renormalized sense. Moreover f satisfies the entropy
inequality:

.”f log f dXdU-IJlfg log f, dxdv

+ ”e(f)d.xdu <0 forallt>0.

It 1s classically known that a solution of Boltzmann
equation in the usual sense formally satisfies entropy
equality. This is the content of Boltzmann’s H-theorem.
Since f satisfies (B) 1n the renormalized sense, the ques-
tion arises whether f has the same property. It turns out
the solution constructed by DiPerna and Lions satisfies
entropy 1nequality, thus obeying the all important Sec-
ond Law of Thermodynamics.

In the sequel, we indicate how DiPerna and Lions
overcome the above mentioned difficulties in proving
Theorem 1.

6. Renormalized solutions

A tfundamental problem in Applied Mathematics and

Numerical Analysis is to characterize the weak limit of a

sequence of approximate/exact solutions of a nonlinear

system. For reasons cited above, this 1s a non-trivial

problem. Turbulence modelling falls in this category.
Let us cite the success story of Hopf equation:

w,+ Hu), =0, xe R, t>0, Hu) = (4*/2),
ulx, HD=ug(x), xe R.
Approximate solutions are defined by the introduction
of artificial viscosity:

1
* (5)

u; + Hw®) =eut,
u (x,0) = uy(x).

The intrinsic characterization of the weak limit u of &€ is
as follows:

N(uw), +q(u), <0 Vn convex, }
where ¢ =n'H’, prime denoting derivative w.r.t u.

(6)

This is somewhat surprising because we pass from an
equation (5) to a set of inequalities (6). This can be eas-
ily deduced by multiplying equation (5) by 1n'(4°) which
yields

a £ a £ £ ¥, E €
370 () + 37 90 =en (), —en"(u (ut )

S.‘:n(ug)ﬂ.

Passing to the Limit as € — 0, we arrive formally at
equation (6). Equation (6) is known as entropy inequal-
ity which is imposed on solutions of Hopf equation. It is
known that such solutions are unique. In this process of
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characterization of the limit of «%, the main idea is the
consideration of nonlinear transformation MN(u) of solu-
tions.

Imitating the same idea, DiPerna and Lions introduce:

Definition. fe L, (i.e. f is locally integrable) is a
renormalized solution of (B) if Qs (£, f) (1 +f)" € L},
and the following equation is satisfied in the sense of
distributions (i.e. in the sense of averages):

%,
iV g=0(f.NH0+ N7,

with g = log (1+ f).

(RB)

The choice: of the nonlinear transformation B (f)=
log (1 +f) may be justified because (1) it helps to re-
duce the growth of nonlinearities, (ii) log plays an 1m-
portant role in (B) since the time of Boltzmann. In
general, the notions of renormalized and distributional
solutions do not coincide because we are multiplying by
zero at points where f— . They do if Oy € L}, . For-
mally, (RB) is obtained by dividing (B) by (1 +f). So
the above definition might look trivial. But it must be
remembered that equation in (B) does not make sense in
general whereas it is proved that (RB) does. The signifi-
cance of this new concept is that the weak limit of nice
solutions is a renormalized solution that need not be a
distributional solution of (B). This point was completely
missed by the earlier researchers in the field. Renor-
malization is the technique used by DiPerna and Lions
to overcome the difficulty (d3).

7. Compactness of velocity averages

Here we see a remedy suggested by Lions et al.’ to
overcome the difficulty (d2) listed above. If there is a
smoothing effect, (e.g. estimation on the derivatives of
f) then weak convergence becomes strong via, for in-
stance, Rellich’s Lemma. This can then be used to han-
dle nonlineariuies as seen above, However In the case of
transport operator 7, there is smoothing only in non-
characteristic directions. In the characteristic direction
v; singularities propagate. The discovery in ref. 5 is that
velocity averaging compensates for the lack of regulari-
zation in that direction. In some loose terms, one may

state that the average of a family of hyperbolic operators
Is ap elliptic operator. More precisely.

Theorem 2. Let g ¢ LZ(R,XREXRE) be such that

suppg=K is compact- and Tg=Ge L*. Then
Jgdv e H'"(R, x R3).

Let us explain the significance of the above result with-
out defining precisely the symbols used, It says that a
solution g of the transport equation Tg = G gains 1/2-

derivative provided we average out w.r.t v, Indeed, it
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can be taken as a quantitative statement of the feeling
that ‘averages smoothen’ out things. Such a result is to
be compared with a classical one involving Laplacian.
In fact if Ag=G e L? then by Fourier transform
G(E) =& () and so by Parseval’s Identity we see that
(dg/dx,), (azglax;axj) are in L°. Thus we have a gain of 2-
derivatives here.

Proof of Theorem 2. Taking Fourier transform w.r.t x,
the main point ts to estimate

2

_Lal«";l Lﬂé(&,v)du dg,

where K, =supp £, )N {I&.4<a}. By Cauchy-Schwarz
inequality, this is dominated by -

.[REJ.RB IE"I meas (Kcz )|§(§, v)|2 d‘t-':,dv.

The proof is over if we remark that

meas (K, ) < C, (o/I§ I).

8. Passage to the limit

In this part; which is very technical and tedious, DiPerna
and Lions show how to overcome the difficulty (d1).
The main observation is that Q (f, f) involves velocity
averages and the result of §7 shows that there is then a
smoothing effect. We have already illustrated the pas-
sage to the limit in nonlinear terms in such circum-
stances. We end here our discussion on Boltzmann
equation. |

9. Ordinary differential equations

In this paragraph, we see another beautiful piece of
work of DiPerna and Lions where they tackle a problem
which appears In many practical situations. Given a
vector field B(x), x € RY, we are interested in the flow
X(t, x) defined by it: (dX/dr) = B(X), X(0, x)=x. The
first result which comes to our mind is the classical
Cauchy-Lipschitz Theorem which assumes B is Lip-
schitz and proves that for a given x € RY, there is a
unique trajectory ¢ +> X(¢, x) passing through x. This is
the pointwise description of the flow. The' measure
transported by this flow satisfies

e” VA< Ao X, e Vie R, (7)

where A is the Lebesgue measure and ¢g is the maximun
value of Idiv Bl. In particular, equation (7) shows that
Lebesgue measure is preserved, if div B = 0. Thus equa-
tion (7) may be constdered as a generaltzation of Liou-
ville's Theorem, Furthermore, we have also the stability
of individual trajectories in terms of 1C:
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XU, x)) = X2, x2) < ey — xl, (8)

where ¢y 18 the Lipschitz constant of 8.

In many practical situations, B is not Lipschitz. For
instance, i1n incompresstble fluid flows governed by
Navicr—Stokes equations, the velocity field satisfies
divu=0 and Vu is square integrable, i.e. Vu e L?
which signifies that the encrgy of the flow is finite. On
the other hand, we cannot assert that « is Lipschitz. As a
consequence, Cauchy-Lipschitz Theorem is inapplicable
and so a Langrangian description of the flow is not
available. This has been one of the major handicaps in
advancing our knowledge on the qualitative behaviour
of such flows. Tli. wurk of DiPerna and Lions® removes
this obstacle and paves the way for further develop-
ments.

The inequality (8) shows the instability of.individual
trajectories if B is not Lipschitz. The idea of DiPerna
and Lions to overcome this difficulty is to reject the
point-wise picture of the flow and pass to almost-
everywhere flow. Initial condition is not fixed. In fact, a
null set of IC causing instabilities is thrown away. With
this in mind, DiPerna and Lions introduce the following
definition. In order to eliminate the problems at infinity
and concentrate more on the lack of regularity of B, we
consider bounded smooth region Q@ c R" which is in-
variant, t.€. B{x)v{x) = 0, where v(x) is the unit exterior
normal at x € dQ. This signifies that fluid is in a con-
tainer which it does not Jeave.

Definition. X is an almost everywhere flow associated to
B if (a) Xe COR; LY(Q), (b) X(t,x)e Q, Vite R,
xe Q ae., (c) (dX/9t) = B(X) in the sense of distribu-
tions. (D X+, x)=X({t, X(s, X)) VI, s5e R, xe Q a.e.
(e) (7) holds.

Theorem 3. Let B € (L'(Q))", VB € (L' Q)Y *Y and div
B be bounded. Then there is a unique a.e flow X such
that (1) holds. Further the flow X is stable w.r.t pertur-
bations on B.

The measure transported by the flow becomes impor-
tant 1n this analysis. Because this measure satisfies
equation (7), it is intuitively clear that it is enough to
require for stability reasons that div B is bounded. The
requirement that VB is integrable in the above Theorem
comes up as a consistency condition in the course of
analysis which cannot be explained in simple terms. Let
us simply remark that these conditions are considerably
weaker than Lipschitz condition and they are satisfied
by incompressible fluid flows. Existence of unique
Hamiltonian flows i1s something basic in Classical Me-
chanics and taken for granted by physicists. It is to be
pointed out that this was not guaranteed in general be-
fore the work of DiPerna and Lions. In the past, there
have been some attempts to define flows for singular
vector fields (Piano’s solutions, Fillipov solutions,
Glimm-Lax solutions). All of them are *local’ whereas
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the point of view of DiPerna and Lions is ‘global’ in the
sense that 1t 1s whole flow which is now defined and not
individual trajectoriecs. The secret of their success is
discussed in the next section. We close this section by
mentioning that they have obtained several interesting
applications of their theory in Fluid Mechanics. We will
see below 1n §11 one application in Kinetic Theory. -

10. Linear transport equations

It 1s usual to deduce qualitative properties of PDEs by
reducing them to ODEs (e.g. method of characteristics).
However 1n the present case, DiPerna and Lions follow
a rather unconventional method of passing from La-
grangian picture (ODE) to Eulerian picture (PDE). Such
a study 1s rendered possible thanks to the notion of
renormalized solutions.

The Euler equation corresponding to the flow X(¢, x)
is obtained by writing down the PDE satisfied by
u(x, 1) = uo(X(t, x)), where uy is a given initial condition
(1C). Assuming div B = 0 (for simplicity), we see that u
satisfies

(du/dt)=div (B(x)u) in the sense of distributions,
u(x,0)=u,(x) xe Q2.

&)

This is a linear PDE in contrast to the fact that the initial
system of ODEs was nonlinear. However, the coefficient
B(x) 1s not smooth. The idea is to solve equation (9) for
a large class of uy which will enable us to prove Theo-
rem 3. However there is a difficulty in solving equation
(9). If ug € L' then u € L' and so the product Bu is not
defined as a distribution. This situation is familiar to us
and a remedy has already been suggested in §6. The idea
1s to consider nice nonlinear transformation PB(«) and
introduce

Definition. u € L™ (0, T; L'(Q)) is a renormalized solu-
tion of equation (9) if B(u) is a distributional solution of
equation (9) with IC B(uy) V B € C) (R). -

The two notions (distributional and renormalized so-
lutions) are, in general, different but coincide if ue L™
(0, T; L™(Q)). To prove the existence, DiPerna and Li-
ons approximate B and uy, by B® and uf obtained by
convolution with Friedrichs’ mollifiers. It is then classi-
cal to solve equation (9) with B® and uj instead of B and
uy. Let the solution be denoted as u®. The big task is to
show that u® converges weakly and to characterize the
weak limit. To carry out this, they follow the scheme
described in §1. Since the method was already explained
in some detail in the case of Boltzmann equation, we do
not intend to repeat it here. The main point is that such a
scheme converges to a renormalized solution of equa-
tion (9) and not to a distributional solution. The new
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progress that can be made now and that was not possible
in (B) 1s a proof of uniqueness for equation (9). The
proof is a technical marvel which combines all possible
tricks (due to Stampacchia, Moser, Kruzkov, Gronwall,
Holmgren ...). Their end result is
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this can be deduced from the theory of Singular Inte-
grals. We conclude therefore that VB e L} .. Thus the
crucial hypothesis of Theorem 3 is satisfied and so we
can assoctate a unique flow to (VP) which solves the
probiem.

Among several applications given by DiPerna and
Lions, we have chosen (VP) system to show the sharp-
ness of the results involved so that the reader can ap-
preciate the hypotheses and the conclusions of Theorem
3 in a better way.

Theorem 4. There is a unique renormalized solution u
for equation (9).

11. Viasov—Poisson system

This system can be presented in the following form:

Given f, = f,(x,v) 20, find f=f(t,x,0)20 ]
satisfying f(0,x,v) = f,(x,v) and

(f 10)+v-V  f+F-V f=0inR}xR3 xR}
F=F(,x)=-V,®(t,x)

—~A® =pin Rt xR},

p(t,x) =[5 f(t,x,0)do.

Part B: Theory of compensated compactness
and harmonic analysis

A basic problem with nonlinear models coming from
various fields is that noalinear terms appearing in the
equation are not continuous w.r.t the weak topology in
the space defined by the physical estimates available for
the model. In other words, averaging and nonlinearities
do not go hand in hand. The reason is that a weakly
convergent sequence can sustain oscillations which are
magnified by unstable nonlinearities. This was illus-
trated by a simple example in Part A.

This was a great stumbling block in the understanding
of many models from mechanics, for instance. A new era
started with the work of J. Ball around 1977 when he
discovered physically meaningful nonlinear functionals
which are continuous w.r.t weak topology. The purpose
of this part is to describe this situation in detail in one
example and point out the significant contribution of
Lions in this domain.

The situation we have in mind concerns nonlinear
elasticity, Under the action of a force field, the elastic
body undergoes deformations and its state is described
by a displacement field u = (uy, u;, u3) which minimizes
suitable energy functional. The admissible fields satisfy
Vu e L*(R?), i.e. [IVul’dx is finite which simply signifies
that the stored energy of the material 1s finite. If the
material is incompressible then we have in addition that
det(Vu) = 1. In numerical computations, one is often led
to ask: is the limit of a sequence of incompressible ma-
terials incompressible? The corresponding mathematical
question can be posed as follows: consider a sequence
of fields {u,} with bounded energy. i.e. [IVu,’dx € ¢ and
det(Vu,) =1 Vn. As usual it follows, from general re-
sults of Functional Analysis that for a subsequence
Vu,—-Vu weakly in L’(R?). Can one say that
det(Vu) =17 (or) det(Vu,) - det(Vu) in the sense of
averages? Since nonlinear functionals, in general, be-
have badly w.r.t weak convergence, 1t was a great
achievement when J. Ball answered the above question
affirmatively.

Trying to generalize this example, Murat and Tartar
came up with a theory (bearing the name of this part) in
which a fine Fourier analysis of the oscillations and the

(VP)

It is proved by DiPerna and Lions® that there is a
renormalized solution 20 to (VP) under suitable hy-
pothesis on f,. It 1s tempting to compare (VP) with (B).
We are going to discuss the main difficulty in (VP)
which was not present in (B). The above system is sim-
pler than (B) in that collision term is absent' and more
complicated in that the external force F is nonzero and
1s coupled to fin a complicated nonlocal way giving rise
to nonlinearities. A quick look at the system tells that we
must define the flow in (x, v) space corresponding to the
vector field

B(t, x, v) = (v, -V, ® (1, x)).

The principal problem 1s that this vector field is not
smooth enough and we cannot apply Cauchy-Lipschitz
Theorem. On the other hand, the theory of DiPerna and
Lions presented in §9 applies here. First of all,
div, , B = 0. Further the following can be said regarding
the regularity of & through a chagn of sharp statements:
The available estimates on f solution of (VP) are

Wi* f e Ll,lu (finite energy property),
flog* fe Li_u (finite entropy property).

These imply that plog*p e L},.. For non-negative
functions p, this condition is equivalent to saying that p
is an element of the Hardy class 3C},.. Thus we see how
entropy condition and Hardy space are linked.

The question 1s how to deduce the regularity property
of ® which is connected to p via the equation -A® = p.
We have already seen in §7 that we gain two derivatives
in L? sense for ®. Unfortunately, such a result is not true
in L' sense. More exactly, if p € L),, then we cannot
assert (d®/dx;), (0°®/dx; 0x;) € L},.. Since Hardy space
regularity is better than mere integrability and since
p € I, the above regularity for @ is indeed true and
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functional i1s done to explain why certain nonlinear
functionals behave nicely, i.e. they are weakly continu-

OUuSs.
In spite of its existence, the above result had remained

somewhat a mystery because regularity was always the
source of good behaviour and there is no mention of it
in the above theory. Recalling that det(Vu) is a linear
combination of terms of the form (dui/ox)) (du;/oxp)
(du,/ox,), a priori we can only assert that det(Vu) is
integrable, via Holder inequality. That 1s why, people
were pleasantly surprised when Lions et al.'' brought
Hardy space (' into the picture and proved

Theorem 5. Foru e W(R?), det(Vu) e IC(R).

We cannot possibly go into the definition of Hardy
spaces here. In the last section, we have already seen a
characterization of positive elements p of 9¢', namely
that p log™ p is integrable. From this, it is obvious that
saying some function belongs to the Hardy space 3C' is
much more than saying that it is integrable. The reason
for this good regularity given by above theorem can be
heurtstically explained as follows: It is true that each
term (Ju;/dx;) (JQu;/dxy) (duy/dx,) is merely integrable.
However, det(Vu) is formed by a particular combination
of these terms and thére are nontrivial cancellations

between them leading to the above regularity. In other"

words, there 1s a compensation between this functional
form and the given information Vu € L°(R’). Hence the
name of the theory.

This result not only explained those of Ball, Murat
and Tartar but also improved upon them. Furthermore, it
initiated what is now known as Hardy space approach to
nonlinear problems. We end this section by pointing out
Theorem 5 1s only one among a set of results due to Li-
ons 1n this direction.

Part C: Theory of concentration — compacthess
in calculus of variations

In several problems in mechanics and other fields, the
ground state of a system admits a variational characteri-
zation of the following form: Find « € K such that

I =FE(u)= H;IE E(v).

(10)

Typically, E(v) is the energy functional of the system, v
1s the displacement field and K is the set of constraints.
An elementary example 1Is provided by considering the
free elastic vibrations of a membrane £ fixed on its
boundary. The aim is to find the dominant frequency of
these vibrations. Such a situation is modelled by equa-
tion (10) with

132

Q open bounded in RY
E(v) = |, IVui dx,

K={ve H(Q); ol dx=1) r
HY Q) = {v; [ 10 dx, |51V 4i? dx are finite, » = 0 or 9R}. :

(11)

The choice of K signifies that the displacements in K
have finite energy.

How to solve equation (10)? In practice, one is inter-
ested not only in the existence of a solution to equation
(10) but also in its stability. That is why, one is inter-
ested 1n the convergence of any minimizing sequence to
equation (10) and this is essential for computations.
With this goal in mind, the so-called direct method of
calculus of variations proceeds as follows:

First step. Take any minimizing sequence {v,}, i.e.
v, € K and E(v,) — 1. The goal is to examine the con-
vergence of {v,} towards a ground state.

Second step. Since E(v,) 1s bounded, we will be able to
deduce energy estimates on {v,}.

Third step. Using general results of functional analysis,
we conclude that some subsequence of {v,} will con-
verge to a limit u weakly, 1.e. in the sense of averages.

Fourth step. Assuming nice continuity properties of
E w.or.t weak topology, we deduce that lim inf E(v,) =
E(u). In particular, this implies E(u) < 1.

Fifth step. To complete the proof that u is a ground
state, we must finally show that u € K.

In practical cases, it i1s usually difficult to carry out
fourth and fifth steps. We have already had a taste of
difficulties 1n Part A. The above programme has been
successfully carried out in the case of equation (11). To
verify Step (5), one uses Rellich’s Lemma which tmplies
that

Jlunlzdx—aj 21 dx
Q (9

provided that v, — v in H}(Q2) weak.

One can generalize example (11) by choosing

K= {v € Hy(); _LIUIP dx = 1} . (12)
This time, Step (5) 1s carried out via Sobolev’'s Lemma
which says that the nonlinear functional [qlv¥ dx be-
haves well w.r.t weak convergence in H,(Q2) provided Q
is bounded and 1 < p < (2N/N -2). In this sense, the
number (2N/N - 2) is a critical index. If p = (2N/N - 2)
in equation (12) then the above arguments fail. Indeed,

the conclusion of the Sobolev’s Lemma 1s violated for
the sequence

ut(x) =€ “ulxle), o=(N-2/2)

(mass concentration at (). (13)
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Likewise, with = R", a counter example for Rellich’s
Lemma is provided by |

w'(x) =u(x+x,) with x, = oo

(mass going to Infinity). (14)

Thus we see that non-compact groups of translations and
dilations ar¢ potential sources of difficulties and we are
not able to carry out Step (5) of the above programme.
Lions’ works™' are devoted to the study of such non-
compact situations. Several researchers have worked In
the field. Perhaps Lions is not the first one to discover

the phenomena involved in such cases. His originality

lies in the new viewpoint regarding such problems, gen-
erality of his arguments and the enormous number of

applications developed by him and his coworkers. Be-

low, let us see one example where his theory applies.
Slightly modifying our earlier example, we consider

I, =min, K_[ . (Vo + a(x)ni® Ydx,
' ) | ’ (15)

P

Kz{ve H'RY ) J.Rﬁfvlpdx-:l’.

Here we take q(x) smooth such that, a(x) 2 ag > 0 and
im, 5 a(x)=a : A >0 is a parameter in the probiem.
The index p is taken to be subcritical: 2 < p <(2N/N - 2),
since the problem {15) is posed on RM which is un-
bounded. Step (5) of the direct method does not carry
through for reasons described above (see equation (14)).
This is one of the fundamental difficulties which arises
In many practical contexts of which equation (15) is an
example. .

'The 1dea of Lions to overcome this difficulty is to de-

fine a comparison problem using the same group (of-

translations) which is the source of obstacles. Accord-
ingly, the following problem at infinity is introduced:

Iy = minHEKJ‘RH (VU +a™iv? } dx. (16) .
The main result can now be stated.
Theorem7. If the strict inegualities

chlu}l;u 0<u<A (17)

are satisfied then any ninimizing sequence for equation
(15) will admit a subsequence which will converge in
L”(RM). (In particular, the ground state exists for (15).)
The converse is also true. | |

The primary task in the resolution of equation (15) is
to locate the place where the energy density is concen-
trated. After all, the drifling of the energy towards in-
finity is the root cause of all troubles (see equation
(14)). The goal is to examine the circumstances under
which the energy is concentrated 1n a bounded region of
the space which will reduce us to the situation of
Sobolev’s Lemma and so we are done. The method de-
rives its name from these considerations.
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Thus one is led to consider the energy density
£ = W, 008 + lw,(x)V associated to any minimizing se-
quence {v,}. Note that Ifndx < ¢. What can be said of
the possible behaviour of { £,}7 Surprisingly, there are

only three types of them which are mutually exclusive.
We describe them in words.

Vanishing. Energy does not concentrate anywhere. This
is physically uninteresting and so eliminated.

Tightness. Energy in f, is concentrated at 2 point
x, € R".

Dichotomy. Energy in f, is split into two parts f!, f2
which are concentrated in two regions of the space
which drift away w.r.t each other.

Dichotomy can occur and it has to be eliminated if we
expect good behaviour of the minimizing sequence. That
is why strict inequalities (17) are imposed, Indeed as-
suming [ ylv Pdx=cand [, v P =A-0, we see in-
tuitively that [, =] + I, if dichotomy were to hold.
Next, if {x,} = o in the case of tightness then the
situation is similar to Dichotomy with v, =0 or equiva-
lently o= 0. Thus we would have I, =17 which is
again ruled out by equation (17). Thus, the only case left
out is Tightness where {x,} is bounded. In this case, we
can apply Sobolev’s Lemma and so we are through.

Finally, it remains to verify the strict inequalities (17)
and that depends on the problem at hand. In the case of
equations (15), by homothecy, one can check that
I, = A¥P)I, and so equation (17) holds for 0 < < A. If
o = 0, equation (17) is reduced to I, < I, . Whether this
holds or not depends on the way a(x) tends to a™ as

x = e, Since this 1s technical, we stop our discussions
here.

Part D: Hamilton—-Jacobi equation

The H-J equation is a scalar, first order PDE proposed
originally as one of the formulations to describe the
classical mechanics of particles. We consider its sim-
plest form

¢

5o+ HV,0 =0, xeRY, 1>0, (HY)

where H = H(p) is a smooth Hamiltonian. To see the
amazing number of ways, it props up in various con-
texts, the reader is advised to go through Lions ef al®,
Its connection with PDE theory can be scen as follows:
Consider a linear partial differential operator ol the
form P(D)=Z|u|:mﬂu Dﬂ'. T_he plame WAaves gﬂuermed
by it are given by u(x)=¢"'* where £20 is a co-
tangent vector in RY satisfying P(E) = D= aud” =0
In order to obtain more géncral waves geacrated, we
look for solutions of the form n(x)=¢"*" satisfying

IRR
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P(D)yu = 0. This lcads to nonlinear first order PDE of the
type (HJ) for the scalar phase function ¢ even though the
onnginal cquation 15 hinear. Thus, 1t 1s 1mpcerative to un-
derstand (HJ) if one wants to study the instabilities as-
soctated with P(D).

Another way to reach (HJ) is to consider the classical
scalar conscrvation law:

w,+ M), =0, xe R, t>0. (18)

If (x,)=]5_u(y,0)dy then ¢ satisfies (HJ). Thus equa-
tion (1&) can be considered as a subclass of (HJ) via the
relation &, = u in the case N= 1.

One of the first ditficulties in the resolution of Cauchy
problem for equation (18) or (HJ) is that the method of
characteristics fails to produce a global solution u € C°
for equation (18) or ¢ C' for (HJ); the characteristics
are described by Hamiltonian system which in this case
is given by

dx/dr = H'(u(x, 1)), prime-denoting derivative.

[t 1s easily checked that u(x(t), t) = constant if u satisfies
equation (18). Hence, characteristics are straight lines
with speed H (u(x, t}). If the initial condition is such that
H'(u;) > H'(u,) then the characteristics corresponding to
i; and u, would meet and we will have two values for the
solution at the point of intersection. The basic question
1s, therefore, whether one can make a choice among
such multiple values so that we have a smooth solution
of (HJ) or (18). Looking at the complicated wave pat-
terns (starting from smooth phase) produced in experi-
ments, one concludes that this is neither possible nor
realistic.

The next best thing is to accommodate such singular
solutions i1n (HJ) and (18). Since equation (18) is in the
divergence form, one can talk of bounded solutions.
Stnce derivatives occur inside nonlinearity in (HJ), it is
not obvious how to define a solution concept in the class
C’. Even if we do this, it is not guaranteed that there is a
unique solution. In fact, one can easily produce multiple
continuous solutions for (HJ) all satisfying same IC.
Nonuniqueness had been one of the fundamental diffi-
culties with (HJ) and (18). These issues were setitled by
Lax, Oleinik, Kruzkov, etc. in the case of equation (18)
and more recenlly this analysis has been extended by
Lions et al.” in a better way to the case of (HI).

The principal task is therefore to identify the physi-
cally relevant solutions. One of the parameters which is
assumed to be zero in (HJ) and in equation (18) is the
viscosity. If we introduce it, we get the following un-
foldings of the equations (HJ), (18) respectively:

(905/31) + H(V %) = €A, 0", (19)

(Ju19t) + H(u®), = €A u". (20)

It is physically reasonable to say that the limits of ¢%, 4%,
as € — 0 are the meaningful solutions of (HJ) and equa-
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tion (18) respectively. How to chardcterlze these himits
tn an intrinsic fashion?

As seen in Part A, letting € — 0 in equation (20) leads
to the set of inequalities (6) which are to be imposed on
solutions of equation (18). Physically, this implies that
only compressive shocks are allowed to be present in a
solution of equation (18). With this additional require-
ment, one can prove existence, uniqueness and stablllty
of solutions for equation (18).

How to extend the above consideraticns to equation
(19)? Following Lions ef al.”, we can formally argue as
follows: Assume ¢° — ¢ umformly Let y be a smooth-
test function. Consider a local maximum (%, %) of
¢ —y. At this point, we have V, 650, )=
V.. WS %) and D*G°(x5, 1°) < D*y(x%, ). In particular,
AT, )Y SANWGE ). As £ -0, (&5 °) will move
towards a local maximum (xp, £;) of ¢ — W. Moreover at
this point, we have

(dy/dr) + H(Vy) < 0. * (21)

This motivates the following

Definition. We say ¢ € C° is a viscosity sub-solution
If equation (21) holds at every local maximum (xg, #y) of
¢ — y. Likewise, ¢ € C° is viscosity super-solution if
(oy/at) + H(Vy) 2 0 at every local minimum (xo, fp) of
¢ — Y. Viscosity solutions are both sub and super solu-
tions.

First remark is that if ¢ € C' is a classical solution
then 1t 1s a viscosity solution because we can take y = ¢.
The above definition completely avoids reference to the
derivatives of ¢. In distribution theory, we are used to
shifting derivatives to test functions via integration by
parts. Here using maximum principle, we are placing the
derivatives on the test function inside the nonlinearities.
Thus maximum principle is something in-built into vis-
cosity solutions. It is therefore clear that this concept
will be useful in systems which possess order-preserving
property. The main properties enjoyed by viscosity so-
lutions which are not shared by other solutions are listed
in the following:

Theorem 8. We take the initial condition ¢(x, 0) = ¢o(x),
x € R" and consider the Cauchy problem for (HJ). Un-
der suitable growth conditions on H, we have

(1) Existence of viscosity solutions ¢ in the class of
Lipschitz functions. .

(11) Uniqueness of viscosity solutions in rhe class of
bounded continuous functions.

(11) Viscosity solutions are stable w.r.t uniform conver-
gence on compact sets without involving deriva-
fives.

(1v) (Comparison) If ¢, v are viscosity solutions of (HJ)
with IC ¢ and Y, respecnvely with ¢ < Yo then

o<V
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The proof of uniqueness, is, without doubt, the sig-
nificant part of the above result. Kruzkov proved the
same for equation (18) among solutions of bounded
variation assuming entropy condition. His proof is quite
complicated and ingenious because one has to play with
inequalities (6). Assertion in Theorem 8 (i1) i1s much
stronger. However, the proof given in ref. 7 is surpris-
ingly not very complicated.
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Viewing solar mysteries from space

Bhola N. Dwived:i

The solar atmosphere presents a rich tapestry, providing astrophysics with new, unexpected de-
signs of great intricacy. And for millennia we have based our views of the Sun (and the universe)
in the narrow visual window of the electromagnetic spectrum. Qver the last fifty years or so, this
has been extended to the radio, ultraviolet, X-ray, gamma-ray and other parts of the spectrum.
This article presents solar mysteries viewed from major space programmes in the past and future
space missions underway to unravel these mysteries.

FOR millennia, the Sun (and the universe) has been
viewed in the visual light that unaided human cyes are
capablc of seeing. As the bestower of light and life, the
anclents made God out of the Sun. There was conster-
nation, therefore, back in the scventeenth century when
Galileo demonstrated that the Sun was not the immacu-
late object as supposed by ancient philosophers. Since
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then, interests in our ncarest star, the Sun, with 18 sun-
spols and related magnetic phenomena (see Figure 1), have
been passing gently from the consternation of philosophers
to the fascination ol astronomers and astrophysicists, There-
fore, the observations of the Sun and their interpretations
are of universal importance for at least two fundamental
reasons. [First, our Sun is the source of energy ftor the
whole planctary system including our own planct and
almost all aspects of our life have direct relations (o
what happens on the Sun; and second, our Sun
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